TY - JOUR
T1 - Acidic Groups Functionalized Carbon Dots Capping Channels of a Proton Conductive Metal–Organic Framework by Coordination Bonds to Improve the Water-Retention Capacity and Boost Proton Conduction
AU - Zhang, Jin
AU - Zhang, Ru
AU - Liu, Yangyang
AU - Kong, Ya Ru
AU - Luo, Hong Bin
AU - Zou, Yang
AU - Zhai, Lu
AU - Ren, Xiao Ming
N1 - Publisher Copyright:
© 2021 American Chemical Society
PY - 2021/12/22
Y1 - 2021/12/22
N2 - Crystalline porous materials, such as metal–organic frameworks (MOFs) and covalent organic frameworks (COFs), have been demonstrated to be versatile material platforms for the development of solid proton conductors. However, most crystalline porous proton conductors suffer from decreasing proton conductivity with increasing temperature due to releasing water molecules, and this disadvantage severely restricts their practical application in electrochemical devices. In this work, for the first time, hydrophilic carbon dots (CDs) were utilized to hybridize with high proton conductivity MOF-802, which is a model of MOF proton conductors, aiming to improve its water-retention capacity and thus enhance proton conduction. The resultant CDs@MOF-802 exhibits impregnable proton conduction with increasing temperature, and the proton conductivity reaches 10–1 S cm–1, much superior to that of MOF-802, making CDs@MOF-802 one of the most efficient MOF proton conductors reported so far. This study provides a new strategy to improve the water-retention capacity of porous proton conductors and further realize excellent proton conduction.
AB - Crystalline porous materials, such as metal–organic frameworks (MOFs) and covalent organic frameworks (COFs), have been demonstrated to be versatile material platforms for the development of solid proton conductors. However, most crystalline porous proton conductors suffer from decreasing proton conductivity with increasing temperature due to releasing water molecules, and this disadvantage severely restricts their practical application in electrochemical devices. In this work, for the first time, hydrophilic carbon dots (CDs) were utilized to hybridize with high proton conductivity MOF-802, which is a model of MOF proton conductors, aiming to improve its water-retention capacity and thus enhance proton conduction. The resultant CDs@MOF-802 exhibits impregnable proton conduction with increasing temperature, and the proton conductivity reaches 10–1 S cm–1, much superior to that of MOF-802, making CDs@MOF-802 one of the most efficient MOF proton conductors reported so far. This study provides a new strategy to improve the water-retention capacity of porous proton conductors and further realize excellent proton conduction.
KW - CDs
KW - MOF-802
KW - porous proton conductors
KW - proton conduction
KW - water-retention capacity
UR - http://www.scopus.com/inward/record.url?scp=85121660103&partnerID=8YFLogxK
U2 - 10.1021/acsami.1c20884
DO - 10.1021/acsami.1c20884
M3 - 文章
C2 - 34889608
AN - SCOPUS:85121660103
SN - 1944-8244
VL - 13
SP - 60084
EP - 60091
JO - ACS Applied Materials and Interfaces
JF - ACS Applied Materials and Interfaces
IS - 50
ER -