TY - JOUR
T1 - Interfacial Constructing Poly(ionic liquids) on Nanoporous Block Copolymers for Antifouling Ultrafiltration
AU - Ye, Xiangyue
AU - Zhang, Ruotong
AU - Zhou, Jiemei
AU - Qiu, Shoutian
AU - Wang, Yong
N1 - Publisher Copyright:
© 2024 American Chemical Society.
PY - 2025/1/14
Y1 - 2025/1/14
N2 - The remarkable flexibility in structural tunability and designability of poly(ionic liquids) (PILs) has garnered significant attention. Integration of PILs with membranes, novel properties, and functionalities is anticipated for applications in the fields of membrane separation. Here, we develop a facile method to prepare PIL-functionalized membranes in a one-step process by combining selective swelling-induced pore generation and ionic liquid functionalization. The block copolymer of poly(2-dimethylaminoethyl methacrylate)-block-polystyrene (PDMAEMA-b-PS, abbreviated as SDMA) films is immersed in a mixture of ethanol and bromopropane. In addition to the formation of nanoporous structures, an interfacial quaternization reaction between the PDMAEMA blocks and bromopropane occurs to generate poly(methacrylatoethyl propyl dimethylammonium bromide), resulting in the PIL-Br-functionalized membrane (SIL-Br) during the swelling process. It is noteworthy that bromopropane acting as a reactant also promotes the process of selective swelling. The water permeability of the resulting SIL-Br membrane is several times higher than that of the SDMA membrane, which is attributed to the increased pore size and significantly higher hydrophilicity of the SIL-Br membrane. In addition, the anion exchange of SIL-Br with l-proline (l-Pro) readily forms SIL-Pro-functionalized membranes (SIL-Pro), which exhibit exceptional electrical neutrality. Antifouling tests demonstrate that both SIL-Br and SIL-Pro have excellent resistance to proteins compared to the non-PIL-functionalization SDMA membrane, implying their great potential as antifouling membranes for water treatment.
AB - The remarkable flexibility in structural tunability and designability of poly(ionic liquids) (PILs) has garnered significant attention. Integration of PILs with membranes, novel properties, and functionalities is anticipated for applications in the fields of membrane separation. Here, we develop a facile method to prepare PIL-functionalized membranes in a one-step process by combining selective swelling-induced pore generation and ionic liquid functionalization. The block copolymer of poly(2-dimethylaminoethyl methacrylate)-block-polystyrene (PDMAEMA-b-PS, abbreviated as SDMA) films is immersed in a mixture of ethanol and bromopropane. In addition to the formation of nanoporous structures, an interfacial quaternization reaction between the PDMAEMA blocks and bromopropane occurs to generate poly(methacrylatoethyl propyl dimethylammonium bromide), resulting in the PIL-Br-functionalized membrane (SIL-Br) during the swelling process. It is noteworthy that bromopropane acting as a reactant also promotes the process of selective swelling. The water permeability of the resulting SIL-Br membrane is several times higher than that of the SDMA membrane, which is attributed to the increased pore size and significantly higher hydrophilicity of the SIL-Br membrane. In addition, the anion exchange of SIL-Br with l-proline (l-Pro) readily forms SIL-Pro-functionalized membranes (SIL-Pro), which exhibit exceptional electrical neutrality. Antifouling tests demonstrate that both SIL-Br and SIL-Pro have excellent resistance to proteins compared to the non-PIL-functionalization SDMA membrane, implying their great potential as antifouling membranes for water treatment.
UR - http://www.scopus.com/inward/record.url?scp=85213526307&partnerID=8YFLogxK
U2 - 10.1021/acs.langmuir.4c04240
DO - 10.1021/acs.langmuir.4c04240
M3 - 文章
AN - SCOPUS:85213526307
SN - 0743-7463
VL - 41
SP - 945
EP - 954
JO - Langmuir
JF - Langmuir
IS - 1
ER -