TY - JOUR
T1 - Three-dimensional ordered porous electrode materials for electrochemical energy storage
AU - Liu, Zaichun
AU - Yuan, Xinhai
AU - Zhang, Shuaishuai
AU - Wang, Jing
AU - Huang, Qinghong
AU - Yu, Nengfei
AU - Zhu, Yusong
AU - Fu, Lijun
AU - Wang, Faxing
AU - Chen, Yuhui
AU - Wu, Yuping
N1 - Publisher Copyright:
© 2019, The Author(s).
PY - 2019/12/1
Y1 - 2019/12/1
N2 - The past decade has witnessed substantial advances in the synthesis of various electrode materials with three-dimensional (3D) ordered macroporous or mesoporous structures (the so-called “inverse opals”) for applications in electrochemical energy storage devices. This review summarizes recent advancements in 3D ordered porous (3DOP) electrode materials and their unusual electrochemical properties endowed by their intrinsic and geometric structures. The 3DOP electrode materials discussed here mainly include carbon materials, transition metal oxides (such as TiO2, SnO2, Co3O4, NiO, Fe2O3, V2O5, Cu2O, MnO2, and GeO2), transition metal dichalcogenides (such as MoS2 and WS2), elementary substances (such as Si, Ge, and Au), intercalation compounds (such as Li4Ti5O12, LiCoO2, LiMn2O4, LiFePO4), and conductive polymers (polypyrrole and polyaniline). Representative applications of these materials in Li ion batteries, aqueous rechargeable lithium batteries, Li-S batteries, Li-O2 batteries, and supercapacitors are presented. Particular focus is placed on how ordered porous structures influence the electrochemical performance of electrode materials. Additionally, we discuss research opportunities as well as the current challenges to facilitate further contributions to this emerging research frontier.
AB - The past decade has witnessed substantial advances in the synthesis of various electrode materials with three-dimensional (3D) ordered macroporous or mesoporous structures (the so-called “inverse opals”) for applications in electrochemical energy storage devices. This review summarizes recent advancements in 3D ordered porous (3DOP) electrode materials and their unusual electrochemical properties endowed by their intrinsic and geometric structures. The 3DOP electrode materials discussed here mainly include carbon materials, transition metal oxides (such as TiO2, SnO2, Co3O4, NiO, Fe2O3, V2O5, Cu2O, MnO2, and GeO2), transition metal dichalcogenides (such as MoS2 and WS2), elementary substances (such as Si, Ge, and Au), intercalation compounds (such as Li4Ti5O12, LiCoO2, LiMn2O4, LiFePO4), and conductive polymers (polypyrrole and polyaniline). Representative applications of these materials in Li ion batteries, aqueous rechargeable lithium batteries, Li-S batteries, Li-O2 batteries, and supercapacitors are presented. Particular focus is placed on how ordered porous structures influence the electrochemical performance of electrode materials. Additionally, we discuss research opportunities as well as the current challenges to facilitate further contributions to this emerging research frontier.
UR - http://www.scopus.com/inward/record.url?scp=85062998203&partnerID=8YFLogxK
U2 - 10.1038/s41427-019-0112-3
DO - 10.1038/s41427-019-0112-3
M3 - 文献综述
AN - SCOPUS:85062998203
SN - 1884-4049
VL - 11
JO - NPG Asia Materials
JF - NPG Asia Materials
IS - 1
M1 - 12
ER -