解脂耶氏酵母底盘细胞的工程改造及应用

Translated title of the contribution: Rewiring and application of Yarrowia lipolytica chassis cell

Meili Sun, Kaifeng Wang, Ran Lu, Xiaojun Ji

Research output: Contribution to journalReview articlepeer-review

1 Scopus citations

Abstract

Engineering microbial chassis cells to efficiently synthesize high value-added products has received increasing attention. This biomanufacturing mode based on excellent performance microbial chassis cells has become the research frontier in the field of synthetic biology. Yarrowia lipolytica, an unconventional oleaginous yeast, is emerging as one of the popular microbial chassis cells in the field of advanced and green biomanufacturing. This is due to its unique physiological and biochemical characteristics, such as the inherent mevalonate pathway, adequate acetylCoA supply, broad substrate spectrum, and high tolerance to multiple extreme environments. These characteristics make Y. lipolytica a superior chassis candidate for the advanced and green biomanufacturing. In recent years, the researches and applications on the rewiring of Y. lipolytica chassis cell for biomanufacturing have gradually increased, which promoted the further upgrading of Y. lipolytica chassis cells. This review firstly describes the development of the genetic elements for rewiring Y. lipolytica chassis cell, including promoters, terminators, and selecting markers. Then, this review summarizes the expression modes and integration methods for endogenous and heterogenous genes, including gene expression based on episomal plasmid, genomic integration based on homologous recombination (HR) and non-homologous end joining (NHEJ). This review further summarizes the research progress of various synthetic biology tools developed for Y. lipolytica, including various gene overexpression methods, biosensor-based dynamic regulation strategies, CRISPR/Cas-based gene expression regulation methods, and the emerging strategies such as genome-scale metabolic modelling, genome-wide mutational screening, etc. This review also introduces the achievements of rewiring Y. lipolytica chassis cell for the synthesis of different high value-added products, including proteins, organic acids, terpenes, functional sugars and sugar alcohols, fatty acids and their derivatives, flavonoids and polyketides, and amino acid derivatives. In addition, the prospects of Y. lipolytica chassis cell-based biomanufacturing are discussed in light of the current progresses, challenges, and trends in this field. Finally, guidelines for building next-generation Y. lipolytica chassis cell for production of the aforementioned products are also emphasized.

Translated title of the contributionRewiring and application of Yarrowia lipolytica chassis cell
Original languageChinese (Traditional)
Pages (from-to)779-807
Number of pages29
JournalSynthetic Biology Journal
Volume4
Issue number4
DOIs
StatePublished - 31 Aug 2023

Cite this