TY - JOUR
T1 - A fluorescent probe based on Cu(II) complex induced catalysis for repetitive detection of cysteine
AU - Wang, Wenjie
AU - Jiang, Long
AU - Wang, Wenjing
AU - Chen, Yanan
AU - Peng, Junqian
AU - Wang, Yuanbo
AU - Jiao, Yanjun
AU - Li, Yajing
AU - Jiang, Xiaoming
AU - Lu, Sheng
AU - Wang, Fang
AU - Chen, Xiaoqiang
N1 - Publisher Copyright:
© 2023 Elsevier B.V.
PY - 2023/11/15
Y1 - 2023/11/15
N2 - Real-time imaging and monitoring of biothiols in living cells are essential for understanding pathophysiological processes. However, the design of the fluorescent probe that has accurate and repeatable real-time monitoring capabilities for these targets is highly challenging. In this study, we prepared a fluorescent sensor, Lc-NBD-Cu(II), which contains a N1, N1, N2-tris-(pyridin-2-ylmethyl) ethane-1,2-diamine as a Cu(II) chelating unit and a 7-nitrobenz-2-oxa-1,3-diazole fluorophore to detect Cysteine (Cys). Emission changes promoted by addition of Cys to this probe are distinctive and correspond to a range of processes including Cys induced loss of Cu(II) from Lc-NBD-Cu(II) to form Lc-NBD, Cu(I) oxidation to reform Cu(II), Cys oxidation to form Cys-Cys, Cu(II) binding to Lc-NBD to reform Lc-NBD-Cu(II), and competitive binding of Cu(II) to Cys-Cys. The study also shows that Lc-NBD-Cu(II) maintains high stability during the sensing process and that it can be utilized over a number of detection cycles. Finally, the findings show that Lc-NBD-Cu(II) can be utilized to repetitively sense Cys in living HeLa cells.
AB - Real-time imaging and monitoring of biothiols in living cells are essential for understanding pathophysiological processes. However, the design of the fluorescent probe that has accurate and repeatable real-time monitoring capabilities for these targets is highly challenging. In this study, we prepared a fluorescent sensor, Lc-NBD-Cu(II), which contains a N1, N1, N2-tris-(pyridin-2-ylmethyl) ethane-1,2-diamine as a Cu(II) chelating unit and a 7-nitrobenz-2-oxa-1,3-diazole fluorophore to detect Cysteine (Cys). Emission changes promoted by addition of Cys to this probe are distinctive and correspond to a range of processes including Cys induced loss of Cu(II) from Lc-NBD-Cu(II) to form Lc-NBD, Cu(I) oxidation to reform Cu(II), Cys oxidation to form Cys-Cys, Cu(II) binding to Lc-NBD to reform Lc-NBD-Cu(II), and competitive binding of Cu(II) to Cys-Cys. The study also shows that Lc-NBD-Cu(II) maintains high stability during the sensing process and that it can be utilized over a number of detection cycles. Finally, the findings show that Lc-NBD-Cu(II) can be utilized to repetitively sense Cys in living HeLa cells.
KW - Biothiols
KW - Cu(II)
KW - Cysteine
KW - Fluorescent probes
KW - Repetitive
UR - http://www.scopus.com/inward/record.url?scp=85161601783&partnerID=8YFLogxK
U2 - 10.1016/j.saa.2023.122942
DO - 10.1016/j.saa.2023.122942
M3 - 文章
C2 - 37295379
AN - SCOPUS:85161601783
SN - 1386-1425
VL - 301
JO - Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy
JF - Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy
M1 - 122942
ER -