Abstract
A series of 3D flower-like Ni–Fe layered double hydroxides (LDHs) were synthesized successfully and used as the cathode materials for nickel-metal hydride battery (Ni-MH battery). The 4Ni–Fe LDH electrode (Ni/Fe molar ratio = 4:1) displays the highest high-rate discharge property and the most excellent cycling performance. The discharge capacity of the 4Ni–Fe LDH electrode can reach up to 291.3 mAh/g at a discharge rate of 200 mA/g and which delivers a high capacity retention of 98.9% over 200 cycles. In contrast, the pure Ni(OH)2 electrode only has a capacity of 243 mAh/g, and after 100 cycles the capacity retention is just 73.4%. The above improvement can be ascribed to the formation of Ni–Fe LDHs which can consolidate the stability of α-Ni(OH)2 in the KOH solution. In addition, the unique flower-like morphology and the enlarged interlayer spacing also paly important role to promote ion transmission and charge transfer. Considering the competitive price of Fe, 3D flower-like Ni–Fe LDH may be a more economical choice for the cathode material of Ni-MH batteries.
Original language | English |
---|---|
Pages (from-to) | 41087-41096 |
Number of pages | 10 |
Journal | International Journal of Hydrogen Energy |
Volume | 47 |
Issue number | 97 |
DOIs | |
State | Published - 15 Dec 2022 |
Keywords
- Cathode materials
- Ni-Fe layered double hydroxide
- Nickel hydroxide
- Nickel-metal hydride batteries