Abstract
An electrochemical-thermal tandem reaction system was designed in this work and enabled the highly efficient synthesis of propylene oxide (PO) at 1 atm without the use of H2O2. The electrochemical part produced OOH− through a 2e− oxygen reduction reaction, which migrated and distributed in the full space of a chamber filled with a mixture of solid electrolyte particles and modified TS-1 (m-TS-1) catalysts. Mediated by the relay of OOH− and protic solvent methanol, full space tandem reactions were achieved with a high PO selectivity of 95.2% and a productivity of 319.75 mmol gecat−1 h−1. A mechanistic study revealed that the m-TS-1 catalysts accepted the migrated OOH− and formed a Ti-OOH intermediate, which played a key role in relaying the tandem reactions for an efficient propylene epoxidation reaction. Techno-economic analysis and life-cycle assessment revealed favorable figures for the proposed process compared to the conventional process.
Original language | English |
---|---|
Pages (from-to) | 11206-11215 |
Number of pages | 10 |
Journal | Green Chemistry |
Volume | 26 |
Issue number | 22 |
DOIs | |
State | Published - 2 Oct 2024 |