Abstract
Stretchable electroluminescent devices possess ultra-high adaptability to versatile geometries owing to their intrinsically soft components, holding huge potential for future flexible and wearable electronics. However, the utilization of existing devices in harsh environments is greatly restricted by lack reliability, stemming from their vulnerability to solvent exposure and mechanical damage. In this study, we present a 2-hydroxyethylacrylate-acrylic acid gel (HAG)/silicone armor for durably stretchable electroluminescence device by a lamination method. With the synergy of mechanical strength and chemical inertness, the armors possess stab resistance, solvent stability and optical transparency. By laminating two armors with an elastomeric emitter, the multilayer-stacked elastomer exhibits uniform double side emission with a consistent brightness even under large deformation. Impressively, this device can operate stably in extremely harsh conditions, including solvent soaking of ammonia, water, acetic acid and mechanical shocking of impact, cutting, friction and puncture. Our armor design provides a reliable strategy for constructing stretchable electronics with outstanding durability.
Original language | English |
---|---|
Article number | 159129 |
Journal | Chemical Engineering Journal |
Volume | 504 |
DOIs | |
State | Published - 15 Jan 2025 |
Keywords
- Damage-resistant
- Durably stretchable electroluminescent
- Hybrid armor
- Solvent-stable
- Stretchable electronics