TY - JOUR
T1 - Adsorption of Co2+ and Cr3+ in Industrial Wastewater by Magnesium Silicate Nanomaterials
AU - Bao, Jing
AU - Feng, Yongjun
AU - Pan, Yong
AU - Jiang, Juncheng
N1 - Publisher Copyright:
© 2024 by the authors.
PY - 2024/5
Y1 - 2024/5
N2 - In this paper, two flower-like magnesium silicate nanomaterials were prepared. These and another two commercial magnesium silicate materials were characterized using a scanning electron microscope, the N2 adsorption–desorption method, and other methods. The structure–activity relationship between the adsorption performance of these four magnesium silicate materials and their specific surface area, pore size distribution, and pore structure was compared. The results showed that the 3-FMS modified by sodium dodecyl sulfonate (SDS) had the largest specific surface area and pore size, the best adsorption performance, and the largest experimental equilibrium adsorption capacity (qe,exp) for Co2+, reaching 190.01 mg/g, and Cr3+, reaching 208.89 mg/g. The adsorption behavior of the four materials for Co2+ and Cr3+ both fitted the pseudo-second-order kinetic model and Langmuir adsorption model, indicating that chemical monolayer uniform adsorption was the dominant adsorption process. Among them, the theoretical adsorption capacity (qm) of 3-FMS was the highest, reaching 207.62 mg/g for Co2+ and 230.85 mg/g for Cr3+. Through further research, it was found that the four materials mainly removed Co2+ and Cr3+ through electrostatic adsorption, surface metal ions (Mg2+), and acidic groups (-OH and -SO3H) exchanging with ions in solution. The adsorption performance of two self-made flower-like magnesium silicate materials for Co2+ and Cr3+ was superior to that of two commercial magnesium silicates.
AB - In this paper, two flower-like magnesium silicate nanomaterials were prepared. These and another two commercial magnesium silicate materials were characterized using a scanning electron microscope, the N2 adsorption–desorption method, and other methods. The structure–activity relationship between the adsorption performance of these four magnesium silicate materials and their specific surface area, pore size distribution, and pore structure was compared. The results showed that the 3-FMS modified by sodium dodecyl sulfonate (SDS) had the largest specific surface area and pore size, the best adsorption performance, and the largest experimental equilibrium adsorption capacity (qe,exp) for Co2+, reaching 190.01 mg/g, and Cr3+, reaching 208.89 mg/g. The adsorption behavior of the four materials for Co2+ and Cr3+ both fitted the pseudo-second-order kinetic model and Langmuir adsorption model, indicating that chemical monolayer uniform adsorption was the dominant adsorption process. Among them, the theoretical adsorption capacity (qm) of 3-FMS was the highest, reaching 207.62 mg/g for Co2+ and 230.85 mg/g for Cr3+. Through further research, it was found that the four materials mainly removed Co2+ and Cr3+ through electrostatic adsorption, surface metal ions (Mg2+), and acidic groups (-OH and -SO3H) exchanging with ions in solution. The adsorption performance of two self-made flower-like magnesium silicate materials for Co2+ and Cr3+ was superior to that of two commercial magnesium silicates.
KW - adsorption
KW - heavy metals Co and Cr
KW - hierarchical pore structure
KW - industrial wastewater
KW - magnesium silicate nanomaterial
UR - http://www.scopus.com/inward/record.url?scp=85192742296&partnerID=8YFLogxK
U2 - 10.3390/ma17091946
DO - 10.3390/ma17091946
M3 - 文章
AN - SCOPUS:85192742296
SN - 1996-1944
VL - 17
JO - Materials
JF - Materials
IS - 9
M1 - 1946
ER -