TY - JOUR
T1 - Adsorption thermodynamics and kinetics of uridine 5′-monophosphate on a gel-type anion exchange resin
AU - Zhou, Xiqun
AU - Fan, Jiansheng
AU - Li, Nan
AU - Qian, Wenbin
AU - Lin, Xiaoqing
AU - Wu, Jinglan
AU - Xiong, Jian
AU - Bai, Jianxin
AU - Ying, Hanjie
PY - 2011/8/3
Y1 - 2011/8/3
N2 - The adsorption behavior of uridine 5′-monophosphate (UMP) on a gel-type anion-exchange resin SD3 at different temperatures was investigated by the batch method. The dissociation equilibrium of UMP in aqueous solution has been studied. Effects of solution pH, contact time, and initial concentrations of UMP on the adsorption have been discussed. Adsorption equilibrium data had been fitted to three different isotherms including Langmuir, Freundlich, and Sips isotherms, which have been widely used in biosorption processes, and the accuracy for all models has been evaluated by the residual-root-mean-square error. For adsorption kinetics, the adsorption rate of UMP on the resin was interpreted by the Fick model, first- and second-order kinetic models, and the adsorption process was found to be well represented by the Fick model. The solution diffusivities of UMP at different temperatures were estimated by the Wilke-Chang equation. The sorption process was found to be controlled by the intraparticle diffusion. The Fick model and Sips isotherm were chosen to simulate the concentration diffusion of UMP on SD3 resin during the adsorption process. An intraparticle two-dimensional profile of SD3 resin at 0, 1, 4, 15, and 25 min for 293.15, 303.15, and 313.15 K was shown with a satisfactory description of the adsorption process. The thermodynamic parameters such as Gibbs free energy and enthalpy and entropy changes were calculated, and the values indicated that the adsorption process of UMP on SD3 resin was spontaneous and endothermic.
AB - The adsorption behavior of uridine 5′-monophosphate (UMP) on a gel-type anion-exchange resin SD3 at different temperatures was investigated by the batch method. The dissociation equilibrium of UMP in aqueous solution has been studied. Effects of solution pH, contact time, and initial concentrations of UMP on the adsorption have been discussed. Adsorption equilibrium data had been fitted to three different isotherms including Langmuir, Freundlich, and Sips isotherms, which have been widely used in biosorption processes, and the accuracy for all models has been evaluated by the residual-root-mean-square error. For adsorption kinetics, the adsorption rate of UMP on the resin was interpreted by the Fick model, first- and second-order kinetic models, and the adsorption process was found to be well represented by the Fick model. The solution diffusivities of UMP at different temperatures were estimated by the Wilke-Chang equation. The sorption process was found to be controlled by the intraparticle diffusion. The Fick model and Sips isotherm were chosen to simulate the concentration diffusion of UMP on SD3 resin during the adsorption process. An intraparticle two-dimensional profile of SD3 resin at 0, 1, 4, 15, and 25 min for 293.15, 303.15, and 313.15 K was shown with a satisfactory description of the adsorption process. The thermodynamic parameters such as Gibbs free energy and enthalpy and entropy changes were calculated, and the values indicated that the adsorption process of UMP on SD3 resin was spontaneous and endothermic.
UR - http://www.scopus.com/inward/record.url?scp=79960855311&partnerID=8YFLogxK
U2 - 10.1021/ie101721a
DO - 10.1021/ie101721a
M3 - 文章
AN - SCOPUS:79960855311
SN - 0888-5885
VL - 50
SP - 9270
EP - 9279
JO - Industrial and Engineering Chemistry Research
JF - Industrial and Engineering Chemistry Research
IS - 15
ER -