An extremely active and durable Mo2C/graphene-like carbon based electrocatalyst for hydrogen evolution reaction

Yanping Zhu, Gao Chen, Yijun Zhong, Wei Zhou, Meilin Liu, Zongping Shao

Research output: Contribution to journalArticlepeer-review

17 Scopus citations

Abstract

The efficiency of hydrogen production from electrolysis of water is severely limited by the sluggish kinetics of hydrogen evolution reaction (HER). Here we report our findings in the development of a very active and durable HER electrocatalyst derived from a one-pot synthesis of highly porous molybdenum carbide (Mo2C) nanoparticles uniformly dispersed on nitrogen-doped graphene-like carbon. The nanocomposite catalyst displays excellent HER activity and durability in an acidic electrolyte among all non-noble-metal catalysts ever reported. The remarkable performance is attributed to the unique nanostructure of the Mo2C phase, the conductive nitrogen-doped graphene-like carbon network, the high porosity of the hybrid, and the synergistic effect between the Mo2C and the carbon substrate. Further, the facile and low-cost synthetic strategy for preparation of such nanostructures may open up opportunities for exploiting other high-performance electrocatalysts for various applications.

Original languageEnglish
Pages (from-to)230-237
Number of pages8
JournalMaterials Today Energy
Volume6
DOIs
StatePublished - Dec 2017

Fingerprint

Dive into the research topics of 'An extremely active and durable Mo2C/graphene-like carbon based electrocatalyst for hydrogen evolution reaction'. Together they form a unique fingerprint.

Cite this