Abstract
The oxygen reduction reaction (ORR) plays a crucial role in key processes of fuel cells and zinc-air batteries. To enable commercialization, reducing the platinum (Pt) content and increasing the specific activity per unit mass is essential. A promising approach involves synthesizing of Fe-N-C precursors via the polyaniline (PANI) pathway, which ensures a uniform distribution of Fe-N-C species and facilitates the subsequent adsorption of platinum ions. This leads to the formation of Pt-Fe bimetallic alloys. The synergistic interaction between Pt and Fe-N-C sites promotes the homogeneous dispersion of Pt and the formation of smaller particle sizes, which in turn enhances intrinsic activity and stability of the catalyst. Notably, the Pt/Fe-N-C catalyst, featuring an ultra-low Pt loading of just 1.79 wt%, exhibits a remarkable doubling of mass activity compared to conventional catalysts. Moreover, zinc-air batteries using this catalyst achieve an impressive peak power density of 200 mW/cm2.
Original language | English |
---|---|
Journal | Frontiers in Energy |
DOIs | |
State | Accepted/In press - 2025 |
Keywords
- fuel cells
- mass activity
- oxygen reduction reaction (ORR)
- Pt-Fe-N-C catalysts
- synergistic effect