Atomically Dispersed Nickel Anchored on a Nitrogen-Doped Carbon/TiO2 Composite for Efficient and Selective Photocatalytic CH4 Oxidation to Oxygenates

Hui Song, Hengming Huang, Xianguang Meng, Qi Wang, Huilin Hu, Shengyao Wang, Hongwei Zhang, Wipakorn Jewasuwan, Naoki Fukata, Ningdong Feng, Jinhua Ye

Research output: Contribution to journalArticlepeer-review

57 Scopus citations

Abstract

Direct photocatalytic oxidation of methane to liquid oxygenated products is a sustainable strategy for methane valorization at room temperature. However, in this reaction, noble metals are generally needed to function as cocatalysts for obtaining adequate activity and selectivity. Here, we report atomically dispersed nickel anchored on a nitrogen-doped carbon/TiO2 composite (Ni−NC/TiO2) as a highly active and selective catalyst for photooxidation of CH4 to C1 oxygenates with O2 as the only oxidant. Ni−NC/TiO2 exhibits a yield of C1 oxygenates of 198 μmol for 4 h with a selectivity of 93 %, exceeding that of most reported high-performance photocatalysts. Experimental and theoretical investigations suggest that the single-atom Ni−NC sites not only enhance the transfer of photogenerated electrons from TiO2 to isolated Ni atoms but also dominantly facilitate the activation of O2 to form the key intermediate ⋅OOH radicals, which synergistically lead to a substantial enhancement in both activity and selectivity.

Original languageEnglish
Article numbere202215057
JournalAngewandte Chemie - International Edition
Volume62
Issue number4
DOIs
StatePublished - 23 Jan 2023

Keywords

  • Oxygenates
  • Photocatalysis
  • Selective Methane Oxidation
  • Single Ni−NC Sites
  • TiO

Fingerprint

Dive into the research topics of 'Atomically Dispersed Nickel Anchored on a Nitrogen-Doped Carbon/TiO2 Composite for Efficient and Selective Photocatalytic CH4 Oxidation to Oxygenates'. Together they form a unique fingerprint.

Cite this