Abstract
Aiming at the difficulty of integrated repair of osteochondral tissue, we designed a hybrid hydrogel scaffold that mimicked the microenvironment of osteochondral niches. Besides, the nano-hydroxyapatite (nHAP) was specially introduced into the hydrogel for its natural ability to promote bone regeneration. The hydrogel also exhibited good toughness (7500 KJ/m3), strength (1000 kPa), viscoelasticity, and in vitro cell experiments showed that hydrogels had quite good cytocompatibility (near 100 % viability). The results of the three-dimensional (3D) cell culture also proved that the survival rate of the cells in the hybrid hydrogels doped with nHAP and dispersion were the highest. In vitro RT-qPCR experiments proved that after being cultured in hydrogel scaffolds doped with nHAP, bone mesenchymal stem cells (BMSCs) could express genes related to osteoblasts and chondrocytes. As a result, this hydrogel provides a general for developing alternative materials applicable for stem cells differentiation and even osteochondral tissue engineering.
Original language | English |
---|---|
Article number | 118048 |
Journal | Carbohydrate Polymers |
Volume | 264 |
DOIs | |
State | Published - 15 Jul 2021 |
Keywords
- Bioinspired scaffold
- Hyaluronic acid
- Hybrid hydrogels
- Nano-hydroxyapatite
- Stem cells differentiation