TY - JOUR
T1 - Bionic programmed wearable actuators based on 4D printing of liquid metal-spidroin-liquid crystal elastomer composite
AU - Wang, Bingyi
AU - Gao, Bingbing
AU - Ma, Biao
AU - Jiang, Senhao
N1 - Publisher Copyright:
© 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
PY - 2024
Y1 - 2024
N2 - As a pivotal component of robotic systems and wearable devices, flexible actuators play a significant role; while it remains a challenge to achieve intelligent applications due to complex high-degree-of-freedom deformation control and insufficient functionality. Here, inspired by the leaf structure of Ficus benjamina 'Barok', a new type of programmable flexible actuator (PFA) prototype that can be 4D printed is designed, featuring a liquid metal-spidroin-liquid crystal elastomer composite printing functional structure and microstructure substrate, which achieves selective actuation and integrates sensing functions through differentiated manufacturing and pattern design. The interior of PFA is composed of functional masks with photothermal effects and differentiated photopolymerization mesogen structures. The microscopic rearrangement of asymmetric structures at different positions makes remote control of programming deformation convenient. Furthermore, benefiting from the integration of material properties, PFA can sense strain through resistive changes and connect to intelligent devices to transmit signals. The motion support and sensing performance of PFA have the potential to be applied to advanced robotics and human-machine interfaces.
AB - As a pivotal component of robotic systems and wearable devices, flexible actuators play a significant role; while it remains a challenge to achieve intelligent applications due to complex high-degree-of-freedom deformation control and insufficient functionality. Here, inspired by the leaf structure of Ficus benjamina 'Barok', a new type of programmable flexible actuator (PFA) prototype that can be 4D printed is designed, featuring a liquid metal-spidroin-liquid crystal elastomer composite printing functional structure and microstructure substrate, which achieves selective actuation and integrates sensing functions through differentiated manufacturing and pattern design. The interior of PFA is composed of functional masks with photothermal effects and differentiated photopolymerization mesogen structures. The microscopic rearrangement of asymmetric structures at different positions makes remote control of programming deformation convenient. Furthermore, benefiting from the integration of material properties, PFA can sense strain through resistive changes and connect to intelligent devices to transmit signals. The motion support and sensing performance of PFA have the potential to be applied to advanced robotics and human-machine interfaces.
KW - 4D Printed
KW - Programmable flexible actuator
KW - bionic devices
KW - intelligent application
KW - wearable devices
UR - http://www.scopus.com/inward/record.url?scp=85196121450&partnerID=8YFLogxK
U2 - 10.1080/17452759.2024.2349677
DO - 10.1080/17452759.2024.2349677
M3 - 文章
AN - SCOPUS:85196121450
SN - 1745-2759
VL - 19
JO - Virtual and Physical Prototyping
JF - Virtual and Physical Prototyping
IS - 1
M1 - e2349677
ER -