Bismuth-Decorated Beta Zeolites Catalysts for Highly Selective Catalytic Oxidation of Cellulose to Biomass-Derived Glycolic Acid

Fenfen Wang, Dongxue Qu, Shaoshuai Wang, Guojun Liu, Qiang Zhao, Jiaxue Hu, Wendi Dong, Yong Huang, Jinjia Xu, Yuhui Chen

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Catalytic conversion of cellulose to liquid fuel and highly valuable platform chemicals remains a critical and challenging process. Here, bismuth-decorated β zeolite catalysts (Bi/β) were exploited for highly efficient hydrolysis and selective oxidation of cellulose to biomass-derived glycolic acid in an O2 atmosphere, which exhibited an exceptionally catalytic activity and high selectivity as well as excellent reusability. It was interestingly found that as high as 75.6% yield of glycolic acid over 2.3 wt% Bi/β was achieved from cellulose at 180 °C for 16 h, which was superior to previously reported catalysts. Experimental results combined with characterization revealed that the synergetic effect between oxidation active sites from Bi species and surface acidity on H-β together with appropriate total surface acidity significantly facilitated the chemoselectivity towards the production of glycolic acid in the direct, one-pot conversion of cellulose. This study will shed light on rationally designing Bi-based heterogeneous catalysts for sustainably generating glycolic acid from renewable biomass resources in the future.

Original languageEnglish
Article number16298
JournalInternational Journal of Environmental Research and Public Health
Volume19
Issue number23
DOIs
StatePublished - Dec 2022

Keywords

  • Bi/β
  • biomass
  • cellulose
  • glycolic acid
  • hydrolysis oxidation

Fingerprint

Dive into the research topics of 'Bismuth-Decorated Beta Zeolites Catalysts for Highly Selective Catalytic Oxidation of Cellulose to Biomass-Derived Glycolic Acid'. Together they form a unique fingerprint.

Cite this