TY - JOUR
T1 - Bonding in M(NHBMe)2 and M[Mn(CO)5]2 complexes (M=Zn, Cd, Hg; NHBMe=(HCNMe)2B)
T2 - divalent group 12 metals with zero oxidation state
AU - Pan, Sudip
AU - Zhao, Lili
AU - Frenking, Gernot
N1 - Publisher Copyright:
© 2021, The Author(s).
PY - 2021/6
Y1 - 2021/6
N2 - Quantum chemical studies using density functional theory were carried out on M(NHBMe)2 and M[Mn(CO)5]2 (M=Zn, Cd, Hg) complexes. The calculations suggest that M(NHBMe)2 and M[Mn(CO)5]2 have D2d and D4d symmetry, respectively, with a 1A1 electronic ground state. The bond dissociation energies of the ligands have the order of Zn > Cd > Hg. A thorough bonding analysis using charge and energy decomposition methods suggests that the title complexes are best represented as NHBMe⇆M0⇄NHBMe and Mn(CO)5⇆M0⇄Mn(CO)5 where the metal atom M in the electronic ground state with an ns2 electron configuration is bonded to the (NHBMe)2 and [Mn(CO)5]2 ligands through donor–acceptor interaction. These experimentally known complexes are the first examples of mononuclear complexes with divalent group 12 metals with zero oxidation state that are stable at ambient condition. These complexes represent the rare situation where the ligands act as a strong acceptor and the metal center acts as strong donor. The relativistic effect of Hg leads to a weaker electron donating strength of the 6s orbital, which explains the trend of the bond dissociation energy.
AB - Quantum chemical studies using density functional theory were carried out on M(NHBMe)2 and M[Mn(CO)5]2 (M=Zn, Cd, Hg) complexes. The calculations suggest that M(NHBMe)2 and M[Mn(CO)5]2 have D2d and D4d symmetry, respectively, with a 1A1 electronic ground state. The bond dissociation energies of the ligands have the order of Zn > Cd > Hg. A thorough bonding analysis using charge and energy decomposition methods suggests that the title complexes are best represented as NHBMe⇆M0⇄NHBMe and Mn(CO)5⇆M0⇄Mn(CO)5 where the metal atom M in the electronic ground state with an ns2 electron configuration is bonded to the (NHBMe)2 and [Mn(CO)5]2 ligands through donor–acceptor interaction. These experimentally known complexes are the first examples of mononuclear complexes with divalent group 12 metals with zero oxidation state that are stable at ambient condition. These complexes represent the rare situation where the ligands act as a strong acceptor and the metal center acts as strong donor. The relativistic effect of Hg leads to a weaker electron donating strength of the 6s orbital, which explains the trend of the bond dissociation energy.
KW - Donor–acceptor interaction
KW - Energy decomposition analysis
KW - Group 12 metal
KW - Oxidation state
UR - http://www.scopus.com/inward/record.url?scp=85106900125&partnerID=8YFLogxK
U2 - 10.1007/s00214-021-02751-y
DO - 10.1007/s00214-021-02751-y
M3 - 文章
AN - SCOPUS:85106900125
SN - 1432-881X
VL - 140
JO - Theoretical Chemistry Accounts
JF - Theoretical Chemistry Accounts
IS - 6
M1 - 69
ER -