Boosting electrocatalytic N2 reduction to NH3 on β-FeOOH by fluorine doping

Xiaojuan Zhu, Zaichun Liu, Huanbo Wang, Runbo Zhao, Hongyu Chen, Ting Wang, Faxing Wang, Yonglan Luo, Yuping Wu, Xuping Sun

Research output: Contribution to journalArticlepeer-review

109 Scopus citations

Abstract

As the cheapest and one of the most abundant transition metals, Fe is not only involved in nitrogenases for biological N2 fixation but is also extensively utilized in the Haber-Bosch process for industrial-scale NH3 synthesis. However, the application of Fe-based electrocatalysts for ambient N2-to-NH3 conversion still requires exploration of effective strategies to boost the catalytic performances for simultaneously achieving a large NH3 yield and a high Faradaic efficiency (FE). Here, we report that the ambient electrocatalytic N2 reduction activity of a β-FeOOH nanorod can be greatly improved by fluorine doping. When tested at -0.60 V vs. reversible hydrogen electrode (RHE) in 0.5 M LiClO4, such a β-FeO(OH,F) nanorod obtains an optimal NH3 yield (42.38 μg h-1 mgcat.-1) and FE (9.02%), much higher than those of pristine β-FeOOH (10.01 μg h-1 mgcat.-1, 2.16%). Density functional theory calculations reveal that the enhancement in activity originates from the lower reaction energy barrier (0.24 eV) of the nanorod than that of β-FeOOH (0.59 eV).

Original languageEnglish
Pages (from-to)3987-3990
Number of pages4
JournalChemical Communications
Volume55
Issue number27
DOIs
StatePublished - 2019

Fingerprint

Dive into the research topics of 'Boosting electrocatalytic N2 reduction to NH3 on β-FeOOH by fluorine doping'. Together they form a unique fingerprint.

Cite this