Abstract
Traditional aqueous energy storage devices are difficult to operate at low temperatures owing to the poor ionic conductivity and sluggish interfacial dynamics in frozen electrolytes. Herein, the low-cost brine refrigerants for food freezing and preservation as electrolytes, and unexpectedly realize high ionic conductivity and stable operation of an aqueous storage device at low temperatures are demonstrated. A CaCl2 brine refrigerant electrolyte (BRE) with a low freezing point −55 °C and high ionic conductivity (10.1 mS cm−1 at −50 °C) is developed for supercapacitors (SCs), which retains 80% of the room temperature capacity at −50 °C and exhibits ultra-long cycle life with excellent capacity retention of 92% over 98,500 cycles, outperforming the other SCs which can be operated below −40 °C in literature. Moreover, the SCs with MgCl2 and NaCl BREs can also be operated successfully with excellent cycle stability and high-capacity retention at low temperatures of −30 and −20 °C, respectively. Fundamental correlation between various cations and their effect on the freezing point reduction of aqueous electrolytes is revealed via Raman investigation and molecular dynamics simulations. This study provides a rational design strategy for green, inexpensive, and safe low-temperature aqueous electrolytes for energy storage devices.
Original language | English |
---|---|
Article number | 2208206 |
Journal | Advanced Functional Materials |
Volume | 33 |
Issue number | 2 |
DOIs | |
State | Published - 10 Jan 2023 |
Keywords
- aqueous supercapacitors
- brine refrigerants
- cation function
- cycle stability
- low-temperature electrolytes