Chemical degradation of the silicone rubber in simulated PEMFC environments

Guo Li, Jin Zhu Tan, Jian Ming Gong

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

The long term stability and durability of gaskets made of silicone rubber in proton exchange membrane fuel cell (PEMFC) has important effect on the sealing and the electric-chemical performance of the fuel cell. In present paper, the time-dependent chemical degradation of a silicone rubber was studied in three simulated PEMFC environments. The test temperature was selected and used at 90°C in this study according to the actual PEM fuel cell operation. Optical microscopy was used to show the topographical changes on the sample surface. Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy was employed to study the surface chemistry of the gasket material before and after exposure to the simulated PEM fuel cell environments over time. The results show that the weight loss increased with the exposure time for the samples. Optical microscopy reveals that the surface conditions of the samples changed over time from initially smooth to rough, crack appearance and finally crack propagation. The ATR-FTIR results show that the surface chemistry changed significantly via de-crosslinking and chain scission in the backbone for the material over time.

Original languageEnglish
Title of host publicationNew and Advanced Materials
Pages741-748
Number of pages8
DOIs
StatePublished - 2011
Event2nd International Conference on Manufacturing Science and Engineering, ICMSE 2011 - Guilin, China
Duration: 9 Apr 201111 Apr 2011

Publication series

NameAdvanced Materials Research
Volume197-198
ISSN (Print)1022-6680

Conference

Conference2nd International Conference on Manufacturing Science and Engineering, ICMSE 2011
Country/TerritoryChina
CityGuilin
Period9/04/1111/04/11

Keywords

  • Degradation
  • PEMFC
  • Silicone rubber
  • Simulated environment

Fingerprint

Dive into the research topics of 'Chemical degradation of the silicone rubber in simulated PEMFC environments'. Together they form a unique fingerprint.

Cite this