TY - JOUR
T1 - Chemoenzymatic Synthesis of Branched Glycopolymer Brushes as the Artificial Glycocalyx for Lectin Specific Binding
AU - Wang, Yuzhen
AU - Gu, Lei
AU - Xu, Fanli
AU - Xin, Fengxue
AU - Ma, Jiangfeng
AU - Jiang, Min
AU - Fang, Yan
N1 - Publisher Copyright:
© 2019 American Chemical Society.
PY - 2019/4/2
Y1 - 2019/4/2
N2 - The artificial glycocalyx fabricated by carbohydrates is of interest because it provides a platform to simulate the cell membranes that widely exist in the nature, and thus enable extensive applications to be implantable in bioengineering. Here, we present a green strategy combining two polymerization techniques, surface-initiated atom transfer radical polymerization (SI-ATRP) and enzyme-catalyzed elongation of polysaccharide, for fabricating densely packed branched glycopolymer brushes on the gold surface as the artificial glycocalyx. In this strategy, SI-ATRP is first performed to graft a linear polymer chain for anchoring maltose, which can be used as an enzyme acceptor for dextransucrase (DSase). Under DSase, a branched polysaccharide is efficiently formed through elongation of a sucrose substrate. Undoubtedly, enzymatic transglycosylation has unique advantages, such as being green, regio-, and stereo-selective, etc. The process of DSase-catalyzed polysaccharide is well monitored by a quartz crystal microbalance, and the grafting density of the glycopolymer brushes is estimated to be 0.7 chain nm -2 with 23.0 nm dry thickness. The polysaccharide brushes display a branched structure consisting of α-d-glucose residues with 5% of α-1,3-linked shorter chain branches, and the branched structure is well characterized by X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry, Fourier transform infrared/mirror reflection, water contact angle analysis, and atomic force microscopy. Compared with the linear maltose-anchored brushes, the branched glycopolymer analog prepared here shows high specific binding capacity of concanavalin A recognition, which should be of use in biomedical application.
AB - The artificial glycocalyx fabricated by carbohydrates is of interest because it provides a platform to simulate the cell membranes that widely exist in the nature, and thus enable extensive applications to be implantable in bioengineering. Here, we present a green strategy combining two polymerization techniques, surface-initiated atom transfer radical polymerization (SI-ATRP) and enzyme-catalyzed elongation of polysaccharide, for fabricating densely packed branched glycopolymer brushes on the gold surface as the artificial glycocalyx. In this strategy, SI-ATRP is first performed to graft a linear polymer chain for anchoring maltose, which can be used as an enzyme acceptor for dextransucrase (DSase). Under DSase, a branched polysaccharide is efficiently formed through elongation of a sucrose substrate. Undoubtedly, enzymatic transglycosylation has unique advantages, such as being green, regio-, and stereo-selective, etc. The process of DSase-catalyzed polysaccharide is well monitored by a quartz crystal microbalance, and the grafting density of the glycopolymer brushes is estimated to be 0.7 chain nm -2 with 23.0 nm dry thickness. The polysaccharide brushes display a branched structure consisting of α-d-glucose residues with 5% of α-1,3-linked shorter chain branches, and the branched structure is well characterized by X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry, Fourier transform infrared/mirror reflection, water contact angle analysis, and atomic force microscopy. Compared with the linear maltose-anchored brushes, the branched glycopolymer analog prepared here shows high specific binding capacity of concanavalin A recognition, which should be of use in biomedical application.
UR - http://www.scopus.com/inward/record.url?scp=85063457237&partnerID=8YFLogxK
U2 - 10.1021/acs.langmuir.8b03704
DO - 10.1021/acs.langmuir.8b03704
M3 - 文章
C2 - 30845797
AN - SCOPUS:85063457237
SN - 0743-7463
VL - 35
SP - 4445
EP - 4452
JO - Langmuir
JF - Langmuir
IS - 13
ER -