TY - JOUR
T1 - Constructing Molecular Sieve Channels in Mixed Matrix Membranes for Efficient CO2 Separation
AU - Wu, Luogang
AU - Sun, Jian
AU - Zhu, Wenyi
AU - Wang, Chongqing
AU - Zhang, Lixiong
AU - Niu, Runping
AU - Hou, Rujing
AU - Pan, Yichang
N1 - Publisher Copyright:
© 2024 American Chemical Society
PY - 2024/5/1
Y1 - 2024/5/1
N2 - Metal-organic frameworks (MOFs) with robust and three-dimensional pore structures are promising molecular sieve fillers in mixed-matrix membranes (MMMs) for carbon capture. Herein, high-valency metal-carboxylate-coordinated yttrium-MOF Y-abtc (abtc = 3,3′,5,5′-azobenzene-tetracarboxylate) with strong coordination bonds was incorporated into the Pebax-1657 polymer matrix to explore their CO2/N2 separation performance. The optimized N-Y-abtc@Pebax-15% MMMs showed simultaneously improved CO2 permeability (79%) and CO2/N2 selectivity (94%) relative to the pristine Pebax membrane, exceeding the 2008 upper bound and approaching the 2019 upper bound. This was ascribed to the synergistic effect of a suitable window aperture, ultrahigh CO2 adsorption capacity (64.77 cm3/g), high ideal adsorption solution theory selectivity (IAST) (254) for CO2/N2 (50/50, v/v) in nanosized Y-abtc (N-Y-abtc), and the newly created molecular sieve channels in N-Y-abtc@Pebax MMMs. Meanwhile, the rigid framework structure and hydrothermal stability of N-Y-abtc provide good pressure resistance and long-term stability for the N-Y-abtc@Pebax-15% MMMs. The successful property translation from the molecular sieve of N-Y-abtc adsorbents into membranes implied its potential application for flue gas treatment and may also shed light on the design of MOF-based MMMs for other challenging separations.
AB - Metal-organic frameworks (MOFs) with robust and three-dimensional pore structures are promising molecular sieve fillers in mixed-matrix membranes (MMMs) for carbon capture. Herein, high-valency metal-carboxylate-coordinated yttrium-MOF Y-abtc (abtc = 3,3′,5,5′-azobenzene-tetracarboxylate) with strong coordination bonds was incorporated into the Pebax-1657 polymer matrix to explore their CO2/N2 separation performance. The optimized N-Y-abtc@Pebax-15% MMMs showed simultaneously improved CO2 permeability (79%) and CO2/N2 selectivity (94%) relative to the pristine Pebax membrane, exceeding the 2008 upper bound and approaching the 2019 upper bound. This was ascribed to the synergistic effect of a suitable window aperture, ultrahigh CO2 adsorption capacity (64.77 cm3/g), high ideal adsorption solution theory selectivity (IAST) (254) for CO2/N2 (50/50, v/v) in nanosized Y-abtc (N-Y-abtc), and the newly created molecular sieve channels in N-Y-abtc@Pebax MMMs. Meanwhile, the rigid framework structure and hydrothermal stability of N-Y-abtc provide good pressure resistance and long-term stability for the N-Y-abtc@Pebax-15% MMMs. The successful property translation from the molecular sieve of N-Y-abtc adsorbents into membranes implied its potential application for flue gas treatment and may also shed light on the design of MOF-based MMMs for other challenging separations.
UR - http://www.scopus.com/inward/record.url?scp=85191157291&partnerID=8YFLogxK
U2 - 10.1021/acs.iecr.4c00458
DO - 10.1021/acs.iecr.4c00458
M3 - 文章
AN - SCOPUS:85191157291
SN - 0888-5885
VL - 63
SP - 7760
EP - 7768
JO - Industrial and Engineering Chemistry Research
JF - Industrial and Engineering Chemistry Research
IS - 17
ER -