Abstract
Controllable doping is required to modulate the electrical properties of the semiconductor devices. Such controllability is a particular issue in p-type doping for two-dimensional (2D) semiconductors. Here, we present a controllable doping strategy for modulating carrier density and threshold voltage of WSe2 transistors via surface oxidation at 200 °C in air. The hole density in the WSe2 channel can be precisely modulated from 1 × 1011 cm-2 to 3.5 × 1012 cm-2 by increasing oxidation duration, while its carrier mobility is virtually unaffected, maintaining a high value of 94.3 cm2·V-1·s-1. This controllable doping method can help to achieve balanced carrier transport in the n-type and p-type transistors in CMOS devices. The doped p-type WSe2 transistor in a CMOS inverter resulted in a high gain of 52 and a lower static power of 0.256 nW at a bias voltage of 1 V. Therefore, our findings might pave the way for reliable fabrication of high-performance 2D electronic circuits.
Original language | English |
---|---|
Pages (from-to) | 17018-17025 |
Number of pages | 8 |
Journal | ACS Applied Materials and Interfaces |
Volume | 17 |
Issue number | 11 |
DOIs | |
State | Published - 19 Mar 2025 |
Keywords
- complementary inverters
- controllable doping
- low-damage
- surface oxidation
- WSe