Abstract
As an emerging class of crystalline materials, porous coordination polymers (PCPs) with regular and flexible nanopores have become particularly promising for adsorption applications. Here, we report a new method to synthesize PCPs with varied flexibility by shifting the position of the methyl group, the shortest alkyl chain, around the coordination sites of T-shaped ligands of H2NL1 (5-(2′-methyl-imidazol-1-yl)-isophthalic acid) and H2NL2 (5-(4′-methyl- imidazol-1-yl)-isophthalic acid). The two generated PCPs (NTU-40 and NTU-41) showed a significant change in gate opening pressure (P/P0: 0.25 to 0.0001) under the stimulus of N2 at 77 K. In addition, the square window (5 × 5 Å2) of the one-dimensional (1D) zigzag channel was divided into two small triangular and straight channels in NTU-41. More importantly, the synergistic effect of structural flexibility, channel type and the micro-pores enabled highly efficient CO2/CH4 and C2H4/CH4 separation under both equilibrium state and dynamic conditions, as well as having good potential for challenging C2H4/C2H6 separation.
Original language | English |
---|---|
Pages (from-to) | 1780-1786 |
Number of pages | 7 |
Journal | Inorganic Chemistry Frontiers |
Volume | 5 |
Issue number | 8 |
DOIs | |
State | Published - Aug 2018 |