TY - JOUR
T1 - Cordycepin extends the longevity of Caenorhabditis elegans via antioxidation and regulation of fatty acid metabolism
AU - Sun, Yang
AU - Zhong, Mengling
AU - Wang, Jingjie
AU - Feng, Mingmei
AU - Shen, Caihong
AU - Han, Zhipeng
AU - Cao, Xiaonian
AU - Zhang, Qi
N1 - Publisher Copyright:
© 2025 Elsevier B.V.
PY - 2025/5/5
Y1 - 2025/5/5
N2 - Aging can cause age-related diseases such as cancer, cardiovascular and neurodegenerative diseases. Cordycepin exerts anti-oxidation, anti-inflammatory and neuroprotective effects. However, the anti-aging effect of cordycepin is still unclear. This study aimed to investigate the anti-aging effect of cordycepin and unravel the underlying mechanism. Cordycepin prolonged the lifespan of C. elegans under normal and heat stress conditions, without effects on the normal growth and reproduction of C. elegans. Cordycepin also improved the locomotion ability, inhibited the deposition of aging pigment lipofuscin and alleviated the oxidative stress damage by decreasing the excessive accumulation of ROS and raising the antioxidant enzyme activities in C. elegans. The metabolomics study showed that cordycepin changed 19 metabolites including citric acid, linoleic acid, oleic acid, glutamic acid, pyruvic acid and so on. Transcriptomics study revealed that cordycepin up-regulated the gene expression of acox-1.2, acox-1.3, acox-1.4, acs-1, acs-15, acdh-1, acdh-4 and acdh-8 in C. elegans, suggesting that cordycepin prolonged its lifespan via regulating fatty acid degradation, fatty acid metabolism and so on. In summary, the current study demonstrated that cordycepin exerted the anti-aging effect on C. elegans by improving the antioxidant system and regulating the genes involved in fatty acid metabolism to inhibit the accumulation of linoleic acid and oleic acid. Therefore, cordycepin might be a promising agent for aging and age-related diseases.
AB - Aging can cause age-related diseases such as cancer, cardiovascular and neurodegenerative diseases. Cordycepin exerts anti-oxidation, anti-inflammatory and neuroprotective effects. However, the anti-aging effect of cordycepin is still unclear. This study aimed to investigate the anti-aging effect of cordycepin and unravel the underlying mechanism. Cordycepin prolonged the lifespan of C. elegans under normal and heat stress conditions, without effects on the normal growth and reproduction of C. elegans. Cordycepin also improved the locomotion ability, inhibited the deposition of aging pigment lipofuscin and alleviated the oxidative stress damage by decreasing the excessive accumulation of ROS and raising the antioxidant enzyme activities in C. elegans. The metabolomics study showed that cordycepin changed 19 metabolites including citric acid, linoleic acid, oleic acid, glutamic acid, pyruvic acid and so on. Transcriptomics study revealed that cordycepin up-regulated the gene expression of acox-1.2, acox-1.3, acox-1.4, acs-1, acs-15, acdh-1, acdh-4 and acdh-8 in C. elegans, suggesting that cordycepin prolonged its lifespan via regulating fatty acid degradation, fatty acid metabolism and so on. In summary, the current study demonstrated that cordycepin exerted the anti-aging effect on C. elegans by improving the antioxidant system and regulating the genes involved in fatty acid metabolism to inhibit the accumulation of linoleic acid and oleic acid. Therefore, cordycepin might be a promising agent for aging and age-related diseases.
KW - Aging
KW - Antioxidation
KW - Caenorhabditis elegans
KW - Cordycepin
KW - Fatty acid metabolism
UR - http://www.scopus.com/inward/record.url?scp=85217952584&partnerID=8YFLogxK
U2 - 10.1016/j.ejphar.2025.177388
DO - 10.1016/j.ejphar.2025.177388
M3 - 文章
AN - SCOPUS:85217952584
SN - 0014-2999
VL - 994
JO - European Journal of Pharmacology
JF - European Journal of Pharmacology
M1 - 177388
ER -