Abstract
Covalent organic frameworks (COFs) display great potential to be assembled into proton conductive membranes for their uniform and controllable pore structure, yet constructing self-standing COF membrane with high crystallinity to fully exploit their ordered crystalline channels for efficient ionic conduction remains a great challenge. Here, a macromolecular-mediated crystallization strategy is designed to manipulate the crystallization of self-standing COF membrane, where the −SO3H groups in introduced sulfonated macromolecule chains function as the sites to interact with the precursors of COF and thus offer long-range ordered template for membrane crystallization. The optimized self-standing COF membrane composed of highly-ordered nanopores exhibits high proton conductivity (75 mS cm−1 at 100 % relative humidity and 20 °C) and excellent flow battery performance, outperforming Nafion 212 and reported membranes. Meanwhile, the long-term run of membrane is achieved with the help of the anchoring effect of flexible macromolecule chains. Our work provides inspiration to design self-standing COF membranes with ordered channels for permselective application.
Original language | English |
---|---|
Article number | e202313571 |
Journal | Angewandte Chemie - International Edition |
Volume | 62 |
Issue number | 50 |
DOIs | |
State | Published - 11 Dec 2023 |
Keywords
- Covalent Organic Frameworks
- Crystallization
- Flow Battery
- Proton Transport
- Self-Standing Membranes