TY - JOUR
T1 - Cyano-substituted benzochalcogenadiazole-based polymer semiconductors for balanced ambipolar organic thin-film transistors
AU - Shi, Shengbin
AU - Wang, Hang
AU - Chen, Peng
AU - Uddin, Mohammad Afsar
AU - Wang, Yuxi
AU - Tang, Yumin
AU - Guo, Han
AU - Cheng, Xing
AU - Zhang, Shiming
AU - Woo, Han Young
AU - Guo, Xugang
N1 - Publisher Copyright:
© The Royal Society of Chemistry.
PY - 2018/7/28
Y1 - 2018/7/28
N2 - Due to their high-lying lowest unoccupied molecular orbitals (LUMOs), π-conjugated polymers based on benzothiadiazole and its derivatives typically are p-type. We report here the successful development of two narrow bandgap, ambipolar donor-acceptor copolymers, PDCNBT2T and PDCNBSe2T, which are based on new cyano-substituted strong electron acceptors, 4,7-dibromo-5,6-dicyano-2,1,3-benzothiadiazole (DCNBT) and 4,7-dibromo-5,6-dicyano-2,1,3-benzoselenadiazole (DCNBSe), respectively. Compared to their polymer analogues with fluorine substituents, the LUMO was lowered by a big margin of ca. 0.6 eV and the bandgap was reduced by 0.2-0.3 eV for the cyano-substituted polymers. Therefore, the cyano-substituted benzothiadiazole polymers showed very low-lying LUMO levels of ca. 4.3 eV. Benefiting from their narrow bandgaps of 1.1-1.2 eV and appropriately positioned LUMO levels, both polymers exhibit well balanced ambipolar transport characteristics in organic thin-film transistors, which differ from the p-type dominating transport properties of their fluorinated polymer analogues. A balanced hole/electron mobility of 0.59/0.47 cm2 V-1 s-1 was achieved for polymer PDCNBT2T, and a reduced hole/electron mobility of 0.018/0.014 cm2 V-1 s-1 was observed for the benzoselenadiazole-based PDCNBSe2T due to its lower crystallinity. These results show that the electron mobility can be enhanced by approximately two orders versus the electron mobility of the previously reported 4,7-di(thiophen-2-yl)-5,6-dicyano-2,1,3-benzothiadiazole-based polymer. This improvement was achieved by using the new acceptor units without additional electron-rich thiophene flanks, which allow a higher degree of freedom in selecting the donor co-unit and more effective tuning of energy levels of frontier molecular orbitals.
AB - Due to their high-lying lowest unoccupied molecular orbitals (LUMOs), π-conjugated polymers based on benzothiadiazole and its derivatives typically are p-type. We report here the successful development of two narrow bandgap, ambipolar donor-acceptor copolymers, PDCNBT2T and PDCNBSe2T, which are based on new cyano-substituted strong electron acceptors, 4,7-dibromo-5,6-dicyano-2,1,3-benzothiadiazole (DCNBT) and 4,7-dibromo-5,6-dicyano-2,1,3-benzoselenadiazole (DCNBSe), respectively. Compared to their polymer analogues with fluorine substituents, the LUMO was lowered by a big margin of ca. 0.6 eV and the bandgap was reduced by 0.2-0.3 eV for the cyano-substituted polymers. Therefore, the cyano-substituted benzothiadiazole polymers showed very low-lying LUMO levels of ca. 4.3 eV. Benefiting from their narrow bandgaps of 1.1-1.2 eV and appropriately positioned LUMO levels, both polymers exhibit well balanced ambipolar transport characteristics in organic thin-film transistors, which differ from the p-type dominating transport properties of their fluorinated polymer analogues. A balanced hole/electron mobility of 0.59/0.47 cm2 V-1 s-1 was achieved for polymer PDCNBT2T, and a reduced hole/electron mobility of 0.018/0.014 cm2 V-1 s-1 was observed for the benzoselenadiazole-based PDCNBSe2T due to its lower crystallinity. These results show that the electron mobility can be enhanced by approximately two orders versus the electron mobility of the previously reported 4,7-di(thiophen-2-yl)-5,6-dicyano-2,1,3-benzothiadiazole-based polymer. This improvement was achieved by using the new acceptor units without additional electron-rich thiophene flanks, which allow a higher degree of freedom in selecting the donor co-unit and more effective tuning of energy levels of frontier molecular orbitals.
UR - http://www.scopus.com/inward/record.url?scp=85050482528&partnerID=8YFLogxK
U2 - 10.1039/c8py00540k
DO - 10.1039/c8py00540k
M3 - 文章
AN - SCOPUS:85050482528
SN - 1759-9954
VL - 9
SP - 3873
EP - 3884
JO - Polymer Chemistry
JF - Polymer Chemistry
IS - 28
ER -