TY - JOUR
T1 - Dual-Action Calcium Monoaluminate Enabled Room-Temperature Curing of Inorganic Phosphate-Based High-Temperature Adhesive
AU - Dong, Zhuo
AU - Zhang, Lei
AU - Yang, Ke
AU - Fang, Zhenggang
AU - Ni, Yaru
AU - Li, Yang
AU - Lu, Chunhua
N1 - Publisher Copyright:
© 2024 by the authors.
PY - 2024/9
Y1 - 2024/9
N2 - High-temperature adhesives find extensive application in diverse domains, encompassing repairs, production processes, and material joining. However, achieving their curing at ambient temperatures remains a formidable challenge due to the inherent requirement of elevated temperatures, typically exceeding 500 °C, for the curing reaction. To overcome this limitation, in this study, we developed a distinctive inorganic phosphate-based composite adhesive by incorporating dual-functional calcium monoaluminate (CA) into a traditional adhesive blend comprising Al(H2PO4)3 and MgO. This distinctive approach significantly diminishes the curing temperature, enabling it to occur at room temperature. Firstly, CA’s facile hydration reaction effectively scavenges surrounding water molecules, thereby accelerating the dehydration curing process of Al(H2PO4)3. Secondly, as hydration is an exothermic process, it locally generates heat around the Al(H2PO4)3, fostering optimal conditions for its curing reaction. Moreover, the adhesive’s strength is substantially bolstered through the strategic inclusion of Nano-Al2O3 (enhancing the availability of reaction sites) and Nano-SiO2 (improving overall stability). As a demonstration, the adhesive formulation with added CA containing 2% Nano-Al2O3 and 2% Nano-SiO2 achieved a remarkable tensile strength of 32.48 MPa at room temperature, underscoring its potential as an efficient solution for various practical adhesive applications. The adhesive prepared in this study harnesses the hydration properties of CA to absorb moisture and release substantial heat, introducing a novel method for ambient temperature curing. This development promises to broaden its applications in refractory materials, coatings, and equipment repair.
AB - High-temperature adhesives find extensive application in diverse domains, encompassing repairs, production processes, and material joining. However, achieving their curing at ambient temperatures remains a formidable challenge due to the inherent requirement of elevated temperatures, typically exceeding 500 °C, for the curing reaction. To overcome this limitation, in this study, we developed a distinctive inorganic phosphate-based composite adhesive by incorporating dual-functional calcium monoaluminate (CA) into a traditional adhesive blend comprising Al(H2PO4)3 and MgO. This distinctive approach significantly diminishes the curing temperature, enabling it to occur at room temperature. Firstly, CA’s facile hydration reaction effectively scavenges surrounding water molecules, thereby accelerating the dehydration curing process of Al(H2PO4)3. Secondly, as hydration is an exothermic process, it locally generates heat around the Al(H2PO4)3, fostering optimal conditions for its curing reaction. Moreover, the adhesive’s strength is substantially bolstered through the strategic inclusion of Nano-Al2O3 (enhancing the availability of reaction sites) and Nano-SiO2 (improving overall stability). As a demonstration, the adhesive formulation with added CA containing 2% Nano-Al2O3 and 2% Nano-SiO2 achieved a remarkable tensile strength of 32.48 MPa at room temperature, underscoring its potential as an efficient solution for various practical adhesive applications. The adhesive prepared in this study harnesses the hydration properties of CA to absorb moisture and release substantial heat, introducing a novel method for ambient temperature curing. This development promises to broaden its applications in refractory materials, coatings, and equipment repair.
KW - calcium monoaluminate
KW - high-temperature adhesive
KW - nano-reinforcement
KW - phosphate-based composite
KW - room-temperature curing
UR - http://www.scopus.com/inward/record.url?scp=85205322447&partnerID=8YFLogxK
U2 - 10.3390/ma17184542
DO - 10.3390/ma17184542
M3 - 文章
AN - SCOPUS:85205322447
SN - 1996-1944
VL - 17
JO - Materials
JF - Materials
IS - 18
M1 - 4542
ER -