Abstract
Nonpolar solvent separation is widely used in petroleum, chemical, food industries, but traditional separation methods consume intensive energy. State-of-art organic solvent nanofiltration membranes require complex modifications for nonpolar solvent transport. For the first time, we propose the concurrent modification of the surface, interface and support layer of dual-layer membranes with three additives (perfluorodecylamine, fluoro substituted aromatic amine, silica nanoparticles) in a one-step cocasting process. A delamination-free dual-layer membrane was obtained with a hierarchical hydrophobicity and transport channels. The novel designed structure elevated the pure n-hexane permeance (28.75 L m−2 hr−1 bar−1) by 3 orders of magnitude with a high lecithin rejection (98.7%). This method of synergistically controlling the hierarchical structures and properties of dual-layer membranes can significantly shorten the preparation process of high-performance nonpolar solvent nanofiltration membranes.
Original language | English |
---|---|
Article number | e17138 |
Journal | AIChE Journal |
Volume | 67 |
Issue number | 4 |
DOIs | |
State | Published - Apr 2021 |
Keywords
- cocasting
- dual-layer membranes
- hydrophobicity
- nonpolar solvent
- organic solvent nanofiltration