Dual mimic enzyme properties of Fe nanoparticles embedded in two-dimensional carbon nanosheets for colorimetric detection of biomolecules

Jie Wang, Chenglong Zhao, Feijin Zhou, Hui Lu, Zhenhong Huang, Cheng Yao, Chan Song

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

The development of novel nanozymes is of great importance for the efficient analysis of biomolecules such as H2O2, glucose, and antioxidants in the diagnosis of some diseases. Herein, novel nanozymes based on Fe nanoparticles (NPs) encapsulated in 2D carbon nanosheets (denoted as Fe@CNs) were constructed and employed in the field of biosensing. Notably, Fe@CNs have intrinsic dual mimic enzyme properties. The colorless colorimetric substrate 3,3′,5,5′-tetramethylbenzidine (TMB) can be oxidized by Fe@CNs as oxidase- and peroxidase-like nanozymes, respectively. The generation of the oxidation state TMB (oxTMB) resulted from the presence of reactive oxygen species (ROS) which were produced by the catalytic decomposition of the dissolved oxygen or H2O2. Thus, a simple colorimetric biosensor was proposed to detect glutathione (GSH), H2O2, and glucose. In addition, the Fe@CN-based nanozymes also have excellent reusability in enzymatic catalysis. After separating from the sensing systems, Fe@CNs can be reused in other catalytic processes. This colorimetric method could be used as a universal sensing platform for the detection of antioxidants and H2O2-related bioanalysis. This work broadens the application of novel nanozymes in biosensing.

Original languageEnglish
Pages (from-to)146-152
Number of pages7
JournalThe Analyst
Volume148
Issue number1
DOIs
StatePublished - 1 Dec 2022

Fingerprint

Dive into the research topics of 'Dual mimic enzyme properties of Fe nanoparticles embedded in two-dimensional carbon nanosheets for colorimetric detection of biomolecules'. Together they form a unique fingerprint.

Cite this