TY - JOUR
T1 - Economical and environment-friendly synthesis of a novel hyperbranched poly(aminomethylphosphine oxide-amine) as co-curing agent for simultaneous improvement of fire safety, glass transition temperature and toughness of epoxy resins
AU - Ma, Chao
AU - Qiu, Shuilai
AU - Yu, Bin
AU - Wang, Junling
AU - Wang, Chengming
AU - Zeng, Wenru
AU - Hu, Yuan
N1 - Publisher Copyright:
© 2017
PY - 2017
Y1 - 2017
N2 - Epoxy resins inherently suffer flammability and brittleness. Various approaches have been used to improve their fire safety or toughness, however, glass transition temperature (Tg) is always deteriorated concomitantly. Herein, a novel hyperbranched poly(aminomethylphosphine oxide-amine) (HPAPOA) was synthesized from α-aminomethylation reaction of trihydroxymethylphosphine (THP) with piperazine before oxidation. THP was prepared from tetrakis(hydroxymethyl)phosphonium sulfate and barium hydroxide to avoid complex purification in the synthesized process. When HPAPOA was utilized as co-curing agent for epoxy resins, Tg and impact strength of epoxy thermosets are improved due to the increased cross-linking density and the multiple toughening mechanisms. Simultaneously, fire safety include flame retardancy, smoke suppression and toxicity reduction is raised (except 1.0 wt% added). The condensed phase flame retardant mechanism is verified as increased char yield and protective and barrier effect of the formed char layer and the gas phase for release of phosphorus-containing species of HPAPOA. With as low as 3.0 wt% HPAPOA incorporated, epoxy thermoset achieved vertical burning V-0 rating with a limited oxygen index of 30.7%. The blowing-out effect for upgradation of vertical burning rating is elucidated. Moreover, the curing reactivity of epoxy systems is slightly changed and the reaction activation energy is elevated. The thermal decomposition temperature of epoxy thermoset diminishes. With 2.0 wt% HPAPOA added, tensile and flexural properties are improved and those with other contents are slightly depressed. The practical HPAPOA modified epoxy thermosets with obvious disadvantage conquered and higher Tg can be used in industries for high-performance applications.
AB - Epoxy resins inherently suffer flammability and brittleness. Various approaches have been used to improve their fire safety or toughness, however, glass transition temperature (Tg) is always deteriorated concomitantly. Herein, a novel hyperbranched poly(aminomethylphosphine oxide-amine) (HPAPOA) was synthesized from α-aminomethylation reaction of trihydroxymethylphosphine (THP) with piperazine before oxidation. THP was prepared from tetrakis(hydroxymethyl)phosphonium sulfate and barium hydroxide to avoid complex purification in the synthesized process. When HPAPOA was utilized as co-curing agent for epoxy resins, Tg and impact strength of epoxy thermosets are improved due to the increased cross-linking density and the multiple toughening mechanisms. Simultaneously, fire safety include flame retardancy, smoke suppression and toxicity reduction is raised (except 1.0 wt% added). The condensed phase flame retardant mechanism is verified as increased char yield and protective and barrier effect of the formed char layer and the gas phase for release of phosphorus-containing species of HPAPOA. With as low as 3.0 wt% HPAPOA incorporated, epoxy thermoset achieved vertical burning V-0 rating with a limited oxygen index of 30.7%. The blowing-out effect for upgradation of vertical burning rating is elucidated. Moreover, the curing reactivity of epoxy systems is slightly changed and the reaction activation energy is elevated. The thermal decomposition temperature of epoxy thermoset diminishes. With 2.0 wt% HPAPOA added, tensile and flexural properties are improved and those with other contents are slightly depressed. The practical HPAPOA modified epoxy thermosets with obvious disadvantage conquered and higher Tg can be used in industries for high-performance applications.
KW - Epoxy resin
KW - Fire safety
KW - Glass transition temperature
KW - Hyperbranched polymer
KW - Poly(aminomethylphosphine oxide-amine)
KW - Toughening
UR - http://www.scopus.com/inward/record.url?scp=85018487585&partnerID=8YFLogxK
U2 - 10.1016/j.cej.2017.04.070
DO - 10.1016/j.cej.2017.04.070
M3 - 文章
AN - SCOPUS:85018487585
SN - 1385-8947
VL - 322
SP - 618
EP - 631
JO - Chemical Engineering Journal
JF - Chemical Engineering Journal
ER -