TY - JOUR
T1 - Effect of Li nonstoichiometry and TiO2 addition on the microwave dielectric properties of Li3PO4 ceramics
AU - Gu, Huidong
AU - Feng, Chang
AU - Zhu, Hai ou
AU - Zhu, Haikui
AU - Ding, Xifeng
AU - Wang, Lixi
AU - Zhou, Guohui
AU - Wang, Meng
AU - Ta, Shiwo
AU - Zhang, Qitu
N1 - Publisher Copyright:
© 2022
PY - 2022/7/15
Y1 - 2022/7/15
N2 - Li3PO4 ceramic is a promising microwave ceramic material with low dielectric constant. The effect of Li nonstoichiometry on phase compositions, microstructures, and microwave dielectric characteristics of Li3PO4 ceramics, on the other hand, has been examined infrequently. Therefore, in the first part of this study, the stoichiometry and Li nonstoichiometry compositions based on Li3+xPO4(x = 0, 0.03, 0.06, 0.09, 0.12 and 0.15) were prepared by conventional solid-phase method. The results show that a few nonstoichiometric lithium ions enter the lattice of Li3+xPO4. Compared with the chemical content of Li3PO4, the sintering characteristics, relative dielectric constants and quality factors of Li3+xPO4 ceramics can be improved by slightly excessive Li ions, while the properties of Li3PO4 ceramics can be deteriorated by excessive Li ions. Li3.12PO4 ceramics sintered at 975 °C for 2 h have good dielectric properties (εr = 5.89, Q×f = 44,000 GHz, τf = −206 ppm/°C). In order to improve its large negative temperature coefficient of resonant frequency, in the following study, rutile nano TiO2 particles were added as τf compensator. Adding TiO2 powders not only effectively improve the temperature stabilities of the multiphase ceramics, but also make the grain growth more uniform. With the increase of TiO2 content from 0.40 to 0.60, τf increases from −73.5 ppm/°C to +42.3 ppm/°C. The best dielectric property of 0.45Li3.12PO4-0.55TiO2 composite ceramic is εr = 13.29, Q×f = 40,700 GHz, τf = +8.8 ppm/°C.
AB - Li3PO4 ceramic is a promising microwave ceramic material with low dielectric constant. The effect of Li nonstoichiometry on phase compositions, microstructures, and microwave dielectric characteristics of Li3PO4 ceramics, on the other hand, has been examined infrequently. Therefore, in the first part of this study, the stoichiometry and Li nonstoichiometry compositions based on Li3+xPO4(x = 0, 0.03, 0.06, 0.09, 0.12 and 0.15) were prepared by conventional solid-phase method. The results show that a few nonstoichiometric lithium ions enter the lattice of Li3+xPO4. Compared with the chemical content of Li3PO4, the sintering characteristics, relative dielectric constants and quality factors of Li3+xPO4 ceramics can be improved by slightly excessive Li ions, while the properties of Li3PO4 ceramics can be deteriorated by excessive Li ions. Li3.12PO4 ceramics sintered at 975 °C for 2 h have good dielectric properties (εr = 5.89, Q×f = 44,000 GHz, τf = −206 ppm/°C). In order to improve its large negative temperature coefficient of resonant frequency, in the following study, rutile nano TiO2 particles were added as τf compensator. Adding TiO2 powders not only effectively improve the temperature stabilities of the multiphase ceramics, but also make the grain growth more uniform. With the increase of TiO2 content from 0.40 to 0.60, τf increases from −73.5 ppm/°C to +42.3 ppm/°C. The best dielectric property of 0.45Li3.12PO4-0.55TiO2 composite ceramic is εr = 13.29, Q×f = 40,700 GHz, τf = +8.8 ppm/°C.
KW - Composite ceramics
KW - Microwave dielectric properties
KW - Near-zero τ
KW - Non-stoichiometric
UR - http://www.scopus.com/inward/record.url?scp=85127702193&partnerID=8YFLogxK
U2 - 10.1016/j.ceramint.2022.03.317
DO - 10.1016/j.ceramint.2022.03.317
M3 - 文章
AN - SCOPUS:85127702193
SN - 0272-8842
VL - 48
SP - 20332
EP - 20340
JO - Ceramics International
JF - Ceramics International
IS - 14
ER -