Abstract
As a new rising star in the post-graphene two-dimensional materials (2DMs), molybdenum disulfide (MoS2) attracts increasing attentions and is widely applied. However, the chemical and toxicological interaction between MoS2 and other co-contaminants is still poorly understood. Nano-silver (N-Ag) is the most commonly used nanomaterial in commercial products and distributed widely in the environment. Herein, we investigated the effects of chitosan functionalized MoS2 (CS-MoS2) nanosheets, a water-dispersible form of MoS2, on the microbial toxicity of N-Ag. We found that the incorporation of CS-MoS2 nanosheets attenuated the oxidative stress induced by N-Ag on yeast cells, while caused more membrane stress. In addition, the inhibition of N-Ag on the metabolic activities of yeast cells could be attenuated by CS-MoS2 nanosheets as well. The coexistence of N-Ag and CS-MoS2 nanosheets mainly perturbed the amino acid-related metabolic pathways in yeast cells, and phosphoric acid was a potential nanotoxicity biomarker. We further found that CS-MoS2 nanosheets dramatically absorbed the Ag ion released from N-Ag, which might be responsible for its attenuation effect on the microbial toxicity of N-Ag. Our findings provide more new insights for the ecotoxicity evaluation of MoS2 and other 2DMs.
Original language | English |
---|---|
Pages (from-to) | 216-225 |
Number of pages | 10 |
Journal | Chemosphere |
Volume | 198 |
DOIs | |
State | Published - May 2018 |
Keywords
- Co-contamination
- Ecotoxicity
- Metabonomics
- Molybdenum disulfide
- Nano-silver
- Nanotoxicity