Abstract
This numerical study investigates the effects of effective compression ratio in a gasoline and biodiesel fueled reactivity-controlled compression ignition (RCCI) engine. Simulations were conducted via coupled KIVA4-CHEMKIN code. A multi-component reaction mechanism was used to mimic the combustion process of gasoline and biodiesel. The effective compression ratios were kept at 13.71, 14.19, 14.62, 15.02 and 15.37 by varying either intake valve closing timing or stroke lengths. The combustion characteristics and NO emission were compared under different cases. The results reveal that increasing effective compression ratio would contribute to higher peak pressure, more released energy and more NO emissions.
Original language | English |
---|---|
Pages (from-to) | 1491-1496 |
Number of pages | 6 |
Journal | Energy Procedia |
Volume | 158 |
DOIs | |
State | Published - 2019 |
Event | 10th International Conference on Applied Energy, ICAE 2018 - Hong Kong, China Duration: 22 Aug 2018 → 25 Aug 2018 |
Keywords
- Effective compression ratio
- IVC timing
- RCCI
- Stroke length