TY - JOUR
T1 - Efficient 1,3-propanediol production by fed-batch culture of klebsiella pneumoniae
T2 - The role of pH fluctuation
AU - Ji, Xiao Jun
AU - Huang, He
AU - Zhu, Jian Guo
AU - Hu, Nan
AU - Li, Shuang
PY - 2009/12
Y1 - 2009/12
N2 - The fermentative production of 1,3-propanediol (1,3-PD) by Klebsiella pneumoniae under different fed-batch strategies was investigated. pH-stat fed-batch strategies proved to be not effective for economical 1,3-PD production for the existence of relatively high concentration of byproducts and residual glycerol at the end of the fermentation. However, in the pH-stat fed-batch strategy, an important phenomenon was observed that the yields of two main byproducts, 2,3-butanediol and lactic acid, were closely related to pH value. The dominant byproduct was 2,3-butanediol at a pH value of 5.0 to 6.5 but changed to be lactic acid at a pH value of 7.1 to 8.0. Based on the analysis of the phenomenon, a self-protection mechanism in K. pneumoniae, namely that the growing K. pneumoniae cells switch the metabolic pathways responding to environmental pH changes, was proposed. Thus a kind of feeding strategy was further applied during which the pH value was fluctuated between 6.3 and 7.3 periodically by feeding glycerol-ammonia mixture and sulphuric acid to make the metabolic pathways of 2,3-butanediol and lactic acid sub-active under the periodical low or high pH stress. At last, efficient 1,3-PD production was fulfilled under this fed-batch strategy, and the best results were achieved leading to 70 g/l 1,3-PD with a yield of 0.70 mol/mol glycerol and productivity of 0.97 g/l/h, while the two main byproducts and residual glycerol were under low concentrations.
AB - The fermentative production of 1,3-propanediol (1,3-PD) by Klebsiella pneumoniae under different fed-batch strategies was investigated. pH-stat fed-batch strategies proved to be not effective for economical 1,3-PD production for the existence of relatively high concentration of byproducts and residual glycerol at the end of the fermentation. However, in the pH-stat fed-batch strategy, an important phenomenon was observed that the yields of two main byproducts, 2,3-butanediol and lactic acid, were closely related to pH value. The dominant byproduct was 2,3-butanediol at a pH value of 5.0 to 6.5 but changed to be lactic acid at a pH value of 7.1 to 8.0. Based on the analysis of the phenomenon, a self-protection mechanism in K. pneumoniae, namely that the growing K. pneumoniae cells switch the metabolic pathways responding to environmental pH changes, was proposed. Thus a kind of feeding strategy was further applied during which the pH value was fluctuated between 6.3 and 7.3 periodically by feeding glycerol-ammonia mixture and sulphuric acid to make the metabolic pathways of 2,3-butanediol and lactic acid sub-active under the periodical low or high pH stress. At last, efficient 1,3-PD production was fulfilled under this fed-batch strategy, and the best results were achieved leading to 70 g/l 1,3-PD with a yield of 0.70 mol/mol glycerol and productivity of 0.97 g/l/h, while the two main byproducts and residual glycerol were under low concentrations.
KW - 1,3-propanediol
KW - Fed-batch
KW - Glycerol
KW - Klebsiella pneumoniae
KW - pH fluctuation
UR - http://www.scopus.com/inward/record.url?scp=73149104164&partnerID=8YFLogxK
U2 - 10.1007/s12010-008-8492-9
DO - 10.1007/s12010-008-8492-9
M3 - 文章
C2 - 19156368
AN - SCOPUS:73149104164
SN - 0273-2289
VL - 159
SP - 605
EP - 613
JO - Applied Biochemistry and Biotechnology
JF - Applied Biochemistry and Biotechnology
IS - 3
ER -