Fabrication of S,N-doped carbon-coated SnS2/SnS heterostructures supported by hollow carbon microspheres for sodium-ion storage

Suning Gao, Zaichun Liu, Liangtao Yang, Jie Shao, Qunting Qu, Yuping Wu, Philipp Adelhelm, Rudolf Holze

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

Developing novel anode materials containing electroactive heterostructures which boost ion and charge transfer kinetics in a carbon matrix is still a great challenge. Here we report on a new smartly designed material: SnS2/SnS p-n heterostructures embedded in S,N-doped carbon layer supported by hollow carbon spheres (C@SnSx@C) by a facile method and applied as negative electrode material in sodium ion batteries. The C@SnSx@C2 (at optimized carbon ratio) negative electrode can deliver an initial reversible capacity of 636.5 mAh·g−1 at 0.1 A·g−1, superior rate capability (265.1 mAh·g−1 at rate of 10.0 A·g−1) and long cycle life (capacity retention of 96.3 % at 1.0 A·g−1 after 150 cycles). The SnS2/SnS p-n heterojunctions provide a lower sodium ion diffusion energy barrier (0.38 eV), higher Na+ adsorption energy (−4.66 eV) and higher electronic conductivity due to an internal electric field according to density functional theory calculations compared to plain SnS. Moreover, S,N-doped carbon facilitates electronic conductivity and buffers the volume changes during the conversion reaction-based SnSx upon sodium insertion and extraction process. Porous hollow carbon spheres contribute to prevent the agglomeration of SnS2/SnS nanosheets and keep the structural integrity. Our findings on this unique material might be extended to other ion battery technologies.

Original languageEnglish
Article number050527
JournalJournal of the Electrochemical Society
Volume168
Issue number5
DOIs
StatePublished - May 2021

Fingerprint

Dive into the research topics of 'Fabrication of S,N-doped carbon-coated SnS2/SnS heterostructures supported by hollow carbon microspheres for sodium-ion storage'. Together they form a unique fingerprint.

Cite this