TY - JOUR
T1 - Growing covalent organic frameworks on porous substrates for molecule-sieving membranes with pores tunable from ultra- to nanofiltration
AU - Shi, Xiansong
AU - Xiao, Ankang
AU - Zhang, Chenxu
AU - Wang, Yong
N1 - Publisher Copyright:
© 2019 Elsevier B.V.
PY - 2019/4/15
Y1 - 2019/4/15
N2 - Crystalline imine-based covalent organic frameworks (COFs) have attracted great interest as next-generation water treatment materials owning to their numerous merits. The construction of COF layers with tunable pore sizes ranging from meso- to micropores, which can significantly broaden the membrane selectivity from ultra- (UF) to nanofiltration (NF), has remained unexplored. Herein, we demonstrate the controllable solvothermal synthesis of COF layers with adjustable pore sizes on anodic aluminum oxide (AAO) substrates. With rising synthesis duration the modulation on pore sizes of AAO supports can be achieved till the formation of continuous COF layers, leading to a gradually enhanced selectivity. Importantly, the synthesized microporous COFs shrink the pore sizes of AAO substrates and provide additional nanochannels for water transporting, eventuating in a ~2–9 times higher permeance than other reported UF membranes with comparable rejections. Once forming continuous COF layers, more rigid selectivities based on COF inherent nanochannels (~1.83 nm) can be realized with capacities of removing dyes from water or organic solvent. This work provides a facile methodology to construct COF-based membranes with broadly tunable separation performance, recommending the membranes for removing targeted molecules including proteins, nanoparticles, and dyes.
AB - Crystalline imine-based covalent organic frameworks (COFs) have attracted great interest as next-generation water treatment materials owning to their numerous merits. The construction of COF layers with tunable pore sizes ranging from meso- to micropores, which can significantly broaden the membrane selectivity from ultra- (UF) to nanofiltration (NF), has remained unexplored. Herein, we demonstrate the controllable solvothermal synthesis of COF layers with adjustable pore sizes on anodic aluminum oxide (AAO) substrates. With rising synthesis duration the modulation on pore sizes of AAO supports can be achieved till the formation of continuous COF layers, leading to a gradually enhanced selectivity. Importantly, the synthesized microporous COFs shrink the pore sizes of AAO substrates and provide additional nanochannels for water transporting, eventuating in a ~2–9 times higher permeance than other reported UF membranes with comparable rejections. Once forming continuous COF layers, more rigid selectivities based on COF inherent nanochannels (~1.83 nm) can be realized with capacities of removing dyes from water or organic solvent. This work provides a facile methodology to construct COF-based membranes with broadly tunable separation performance, recommending the membranes for removing targeted molecules including proteins, nanoparticles, and dyes.
KW - Covalent organic frameworks
KW - Nanofiltration
KW - Solvothermal synthesis
KW - Tunable selectivity
KW - Ultrafiltration
UR - http://www.scopus.com/inward/record.url?scp=85060699915&partnerID=8YFLogxK
U2 - 10.1016/j.memsci.2019.01.034
DO - 10.1016/j.memsci.2019.01.034
M3 - 文章
AN - SCOPUS:85060699915
SN - 0376-7388
VL - 576
SP - 116
EP - 122
JO - Journal of Membrane Science
JF - Journal of Membrane Science
ER -