TY - JOUR
T1 - Growth and Cell Properties of Modified Lactobacillus plantarum CICC21001 with Supplementing C18-FFAs to Growth Medium in vitro
AU - Shen, Qinke
AU - Wang, Yuxian
AU - Shen, Jian
AU - Jiang, Ling
AU - Wei, Ce
AU - Zhang, Hongman
N1 - Publisher Copyright:
© 2018, Springer Science+Business Media, LLC, part of Springer Nature.
PY - 2018/9/1
Y1 - 2018/9/1
N2 - Fatty acids (FAs) are one of the important factors that can influence cell growth and membrane composition. The aim of this study was to investigate the influence of supplementing MLM+ growth medium with C18 free fatty acids (C18-FFAs), including stearic (C18:0), oleic (C18:1), linoleic (C18:2), and linolenic (C18:3) acid, on the growth of Lactobacillus plantarum CICC21001 by forming ion pairs with lysine to increase the solubility of FAs in liquid medium. The utilization of C18-FFAs was further confirmed by GC-FID. The investigation of cell properties, including cell surface hydrophobicity and zeta potential, was carried out for the modified L. plantarum and control group (non-supplementation). Furthermore, cell survival was measured in real time under heat (at 55 and 62 °C for 5 min), acid (pH 2.2), and bile salt stress. Our results indicated that the action of L. plantarum was modulated by assimilating C18-FFAs. This study suggested that C18-FFAs altered the life cycles and physiochemical properties of L. plantarum, which provided a guideline for probiotics production and their medical application.
AB - Fatty acids (FAs) are one of the important factors that can influence cell growth and membrane composition. The aim of this study was to investigate the influence of supplementing MLM+ growth medium with C18 free fatty acids (C18-FFAs), including stearic (C18:0), oleic (C18:1), linoleic (C18:2), and linolenic (C18:3) acid, on the growth of Lactobacillus plantarum CICC21001 by forming ion pairs with lysine to increase the solubility of FAs in liquid medium. The utilization of C18-FFAs was further confirmed by GC-FID. The investigation of cell properties, including cell surface hydrophobicity and zeta potential, was carried out for the modified L. plantarum and control group (non-supplementation). Furthermore, cell survival was measured in real time under heat (at 55 and 62 °C for 5 min), acid (pH 2.2), and bile salt stress. Our results indicated that the action of L. plantarum was modulated by assimilating C18-FFAs. This study suggested that C18-FFAs altered the life cycles and physiochemical properties of L. plantarum, which provided a guideline for probiotics production and their medical application.
UR - http://www.scopus.com/inward/record.url?scp=85046007164&partnerID=8YFLogxK
U2 - 10.1007/s00284-018-1499-8
DO - 10.1007/s00284-018-1499-8
M3 - 文章
C2 - 29704124
AN - SCOPUS:85046007164
SN - 0343-8651
VL - 75
SP - 1133
EP - 1141
JO - Current Microbiology
JF - Current Microbiology
IS - 9
ER -