TY - JOUR
T1 - High-Performance Electrocatalytic Conversion of N 2 to NH 3 Using Oxygen-Vacancy-Rich TiO 2 In Situ Grown on Ti 3 C 2 T x MXene
AU - Fang, Yanfeng
AU - Liu, Zaichun
AU - Han, Jingrui
AU - Jin, Zhaoyong
AU - Han, Yaqian
AU - Wang, Faxing
AU - Niu, Yusheng
AU - Wu, Yuping
AU - Xu, Yuanhong
N1 - Publisher Copyright:
© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
PY - 2019/4/25
Y1 - 2019/4/25
N2 - To achieve the energy-effective ammonia (NH 3 ) production via the ambient-condition electrochemical N 2 reduction reaction (NRR), it is vital to ingeniously design an efficient electrocatalyst assembling the features of abundant surface deficiency, good dispersibility, high conductivity, and large surface specific area (SSA) via a simple way. Inspired by the fact that the MXene contains thermodynamically metastable marginal transition metal atoms, the oxygen-vacancy-rich TiO 2 nanoparticles (NPs) in situ grown on the Ti 3 C 2 T x nanosheets (TiO 2 /Ti 3 C 2 T x ) are prepared via a one-step ethanol-thermal treatment of the Ti 3 C 2 T x MXene. The oxygen vacancies act as the main active sites for the NH 3 synthesis. The highly conductive interior untreated Ti 3 C 2 T x nanosheets could not only facilitate the electron transport but also avoid the self-aggregation of the TiO 2 NPs. Meanwhile, the TiO 2 NPs generation could enhance the SSA of the Ti 3 C 2 T x in return. Accordingly, the as-prepared electrocatalyst exhibits an NH 3 yield of 32.17 µg h −1 mg −1 cat. at −0.55 V versus reversible hydrogen electrode (RHE) and a remarkable Faradaic efficiency of 16.07% at −0.45 V versus RHE in 0.1 m HCl, placing it as one of the most promising NRR electrocatalysts. Moreover, the density functional theory calculations confirm the lowest NRR energy barrier (0.40 eV) of TiO 2 (101)/Ti 3 C 2 T x compared with Ti 3 C 2 T x or TiO 2 (101) alone.
AB - To achieve the energy-effective ammonia (NH 3 ) production via the ambient-condition electrochemical N 2 reduction reaction (NRR), it is vital to ingeniously design an efficient electrocatalyst assembling the features of abundant surface deficiency, good dispersibility, high conductivity, and large surface specific area (SSA) via a simple way. Inspired by the fact that the MXene contains thermodynamically metastable marginal transition metal atoms, the oxygen-vacancy-rich TiO 2 nanoparticles (NPs) in situ grown on the Ti 3 C 2 T x nanosheets (TiO 2 /Ti 3 C 2 T x ) are prepared via a one-step ethanol-thermal treatment of the Ti 3 C 2 T x MXene. The oxygen vacancies act as the main active sites for the NH 3 synthesis. The highly conductive interior untreated Ti 3 C 2 T x nanosheets could not only facilitate the electron transport but also avoid the self-aggregation of the TiO 2 NPs. Meanwhile, the TiO 2 NPs generation could enhance the SSA of the Ti 3 C 2 T x in return. Accordingly, the as-prepared electrocatalyst exhibits an NH 3 yield of 32.17 µg h −1 mg −1 cat. at −0.55 V versus reversible hydrogen electrode (RHE) and a remarkable Faradaic efficiency of 16.07% at −0.45 V versus RHE in 0.1 m HCl, placing it as one of the most promising NRR electrocatalysts. Moreover, the density functional theory calculations confirm the lowest NRR energy barrier (0.40 eV) of TiO 2 (101)/Ti 3 C 2 T x compared with Ti 3 C 2 T x or TiO 2 (101) alone.
KW - N reduction reaction
KW - TiO /Ti C T
KW - electrocatalysts
KW - oxygen vacancy
UR - http://www.scopus.com/inward/record.url?scp=85062369696&partnerID=8YFLogxK
U2 - 10.1002/aenm.201803406
DO - 10.1002/aenm.201803406
M3 - 文章
AN - SCOPUS:85062369696
SN - 1614-6832
VL - 9
JO - Advanced Energy Materials
JF - Advanced Energy Materials
IS - 16
M1 - 1803406
ER -