Abstract
Imidodiphosphoric acid (IDPA) catalyzed ring-opening polymerization (ROP) of δ-valerolactone (δ-VL) and ε-caprolactone (ε-CL) with benzyl alcohol (BnOH) as the initiator in toluene at room temperature was investigated. The overall conversions of δ-VL and ε-CL to poly(δ-valerolactone) (PVL) and poly(ε-caprolactone) (PCL), respectively, were more than 90%. Experimental results indicated the living nature of the polymerizations. The polymerization reactions with different monomer-to-initiator ratios proceeded homogeneously to afford PVL and PCL with controlled molecular weight and narrow polydispersities. 1H NMR and MALDI-TOF MS measurements demonstrated the quantitative incorporation of the initiator in the polymer chains. The controlled/living character of the polymerization was examined thoroughly by the kinetics and chain extension experiments, indicating that the IDPA-catalyzed ROPs of δ-VL and ε-CL proceeded through a living mechanism.
Original language | English |
---|---|
Pages (from-to) | 5432-5439 |
Number of pages | 8 |
Journal | Polymer Chemistry |
Volume | 4 |
Issue number | 21 |
DOIs | |
State | Published - 7 Nov 2013 |