Immobilization of a thiol-functionalized ionic liquid onto HKUST-1 through thiol compounds as the chemical bridge

Chong Chen, Zuowang Wu, Yigen Que, Bingxue Li, Qirui Guo, Zhong Li, Lei Wang, Hui Wan, Guofeng Guan

Research output: Contribution to journalArticlepeer-review

45 Scopus citations

Abstract

A novel heterogeneous catalyst [HVIm-(CH2)3SO3H]HSO4@HKUST-1 (IL@HKUST-1), with both Lewis and Brønsted acid sites, was developed for the esterification of oleic acid with short-chain alcohols. HKUST-1 was chemically modified with ethanedithiol, and the vinyl-containing ionic liquid was then grafted onto the carrier through thiol groups. The catalyst IL@HKUST-1 was characterized by XRD, N2 adsorption-desorption, FT-IR, SEM, TG, elemental analysis, and ICP. The results proved that HKUST-1 had typical microporous structure, and the thiol groups were incorporated into the channels of the carrier. Through the reaction of vinyl and thiol, the ionic liquid was successfully immobilized onto SH-HKUST-1 by chemical covalent bonds. The catalyst was applied in the esterification of oleic acid with ethanol, and the optimal conditions were determined as follows: molar ratio of ethanol to oleic acid 12 : 1, catalyst amount 15 wt% (based on oleic acid), reaction time 4 h, and reaction temperature 90 °C. Under the conditions, the conversion of oleic acid was 92.1%. After 5 times of recycling, there was no significant decrease in conversion, showing a certain stability and good reusability of the catalyst. The catalyst also exhibited high catalytic activity in esterification of oleic acid with other short-chain alcohols.

Original languageEnglish
Pages (from-to)54119-54128
Number of pages10
JournalRSC Advances
Volume6
Issue number59
DOIs
StatePublished - 2016

Fingerprint

Dive into the research topics of 'Immobilization of a thiol-functionalized ionic liquid onto HKUST-1 through thiol compounds as the chemical bridge'. Together they form a unique fingerprint.

Cite this