Increasing Stability of SnO2-Based Perovskite Solar Cells by Introducing an Anionic Conjugated Polyelectrolyte for Interfacial Adjustment

Chao Tan, Wenting Xu, Yihong Huan, Bo Wu, Tianshi Qin, Deqing Gao

Research output: Contribution to journalArticlepeer-review

17 Scopus citations

Abstract

Despite the fact that power conversion efficiency (PCE) has been greatly improved in recent years, perovskite solar cells (PSCs) need to overcome some challenges, like stability, for the commercial application. Herein, an anionic conjugated polyelectrolyte, sulfonic-containing polyfluorene (abbreviated to SPF), has been developed to modify the interface between the electron-transporting layer (ETL) SnO2 and the optoelectronic active layer MAPbI3 in the n-i-p cells. After 40 days of storage in atmospheric environment in the dark with exposure to a controlled humidity of about 10%, PCE of the SPF-modified cells with the structure of ITO/SnO2/SPF/MAPbI3/spiro-OMeTAD/Au still remained 94% of the initial value. In contrast, the control cell without SPF only remained 31.1% of its initial efficiency after 29 days. The main reason for the stability enhancement is the adjustment of interfacial energy level, the crystallinity enhancement, and the removal of the interfacial defect of the perovskite layer by introducing the hydrophobic and smooth SPF interfacial layer. Deep electrical study on the PSCs discloses that the cell has low carrier transfer resistance, low leakage current density, and minor interfacial charge accumulation. What’s more, the short-circuit current density is improved, and PCE of 20.47% is achieved.

Original languageEnglish
Pages (from-to)24575-24581
Number of pages7
JournalACS Applied Materials and Interfaces
Volume13
Issue number21
DOIs
StatePublished - 2 Jun 2021

Keywords

  • Interfacial modification
  • anionic conjugated polyelectrolyte
  • cathode interlayer
  • perovskite solar cells
  • photovoltaic
  • stability

Fingerprint

Dive into the research topics of 'Increasing Stability of SnO2-Based Perovskite Solar Cells by Introducing an Anionic Conjugated Polyelectrolyte for Interfacial Adjustment'. Together they form a unique fingerprint.

Cite this