Abstract
The development of commercial poly-γ-glutamic acid (γ-PGA) production by glutamate-dependent strains requires understanding the glutamate dependence mechanism in the strains. Here, we first systematically analyzed the response pattern of Bacillus subtilis to glutamate addition by comparative transcriptomics. Glutamate addition induced great changes in intracellular metabolite concentrations and significantly upregulated genes involved in the central metabolic pathways. Subsequent gene overexpression experiments revealed that only the enhancement of glutamate synthesis pathway successfully led to γ-PGA accumulation without glutamate addition, indicating the key role of intracellular glutamate for γ-PGA synthesis in glutamate-dependent strains. Finally, by a combination of metabolic engineering targets, the γ-PGA titer reached 10.21 ± 0.42 g/L without glutamate addition. Exogenous glutamate further enhanced the γ-PGA yield (35.52 ± 0.26 g/L) and productivity (0.74 g/(L h)) in shake-flask fermentation. This work provides insights into the glutamate dependence mechanism in B. subtilis and reveals potential molecular targets for increasing economical γ-PGA production.
Original language | English |
---|---|
Pages (from-to) | 6263-6274 |
Number of pages | 12 |
Journal | Journal of Agricultural and Food Chemistry |
Volume | 67 |
Issue number | 22 |
DOIs | |
State | Published - 5 Jun 2019 |
Keywords
- Bacillus subtilis NX-2
- glutamate dependence
- poly-γ-glutamic acid
- transcriptome