TY - JOUR
T1 - Iron-loaded pure silica -SVR zeolite for the hydroxylation of phenol
AU - Song, Wenwen
AU - Xie, Haodong
AU - Liu, Li
AU - Ni, Xiang
AU - Xue, Yuan
AU - Liu, Yan
AU - Chen, Junwen
AU - Wang, Lei
AU - Zhu, Hongjun
N1 - Publisher Copyright:
© 2025 The Royal Society of Chemistry.
PY - 2025
Y1 - 2025
N2 - Dihydroxybenzene compounds are a type of crucial fine chemicals used in daily life, but their production process is severely constrained by contamination and relatively low efficiency. In this work, the iron-containing pure silica -SVR zeolite was successfully developed and proven to be an efficient catalyst in the conversion of phenol into dihydroxybenzene compounds in a green way. Notably, in the presence of hydroperoxide, the heterogeneous-mediated oxidative process achieved a record-high conversion of 37% and selectivity of 99%. Combining physicochemical analysis and multiple spectroscopic techniques, the active species was confirmed to be the trivalent iron sites confined within the -SVR voids. Moreover, the accessible ordered silanol defects confined within the -SVR channel system are abundant, providing anchor points for grafting iron sites. The highly active iron species initiates the free radical-mediated reaction pathway, significantly facilitating the oxidative reaction process. As unveiled by the catalytic kinetics, the iron-containing zeotype catalyst affords a TON of 861 and TOF of 430.5 h−1, and the apparent active energy Ea was determined as 26 kJ mol−1. Overall, these results not only provide a highly effective heterogeneous catalyst for the conversion of phenol into dihydroxybenzene compounds in an eco-friendly manner but also open up new horizons for the effective utilization of pure silica zeolites listed in the IZA database.
AB - Dihydroxybenzene compounds are a type of crucial fine chemicals used in daily life, but their production process is severely constrained by contamination and relatively low efficiency. In this work, the iron-containing pure silica -SVR zeolite was successfully developed and proven to be an efficient catalyst in the conversion of phenol into dihydroxybenzene compounds in a green way. Notably, in the presence of hydroperoxide, the heterogeneous-mediated oxidative process achieved a record-high conversion of 37% and selectivity of 99%. Combining physicochemical analysis and multiple spectroscopic techniques, the active species was confirmed to be the trivalent iron sites confined within the -SVR voids. Moreover, the accessible ordered silanol defects confined within the -SVR channel system are abundant, providing anchor points for grafting iron sites. The highly active iron species initiates the free radical-mediated reaction pathway, significantly facilitating the oxidative reaction process. As unveiled by the catalytic kinetics, the iron-containing zeotype catalyst affords a TON of 861 and TOF of 430.5 h−1, and the apparent active energy Ea was determined as 26 kJ mol−1. Overall, these results not only provide a highly effective heterogeneous catalyst for the conversion of phenol into dihydroxybenzene compounds in an eco-friendly manner but also open up new horizons for the effective utilization of pure silica zeolites listed in the IZA database.
UR - http://www.scopus.com/inward/record.url?scp=105000288553&partnerID=8YFLogxK
U2 - 10.1039/d5re00013k
DO - 10.1039/d5re00013k
M3 - 文章
AN - SCOPUS:105000288553
SN - 2058-9883
JO - Reaction Chemistry and Engineering
JF - Reaction Chemistry and Engineering
ER -