TY - JOUR
T1 - Large-pore covalent organic frameworks for ultra-fast tight ultrafiltration (TUF)
AU - Fang, Siyu
AU - Shi, Xiansong
AU - Wang, Xingyuan
AU - Zhang, Zhe
AU - Yin, Congcong
AU - Zhang, Zhipeng
AU - Ju, Tong
AU - Xiong, Sen
AU - Wang, Yong
N1 - Publisher Copyright:
© 2021 Elsevier B.V.
PY - 2021/11/1
Y1 - 2021/11/1
N2 - Tight ultrafiltration (TUF) membranes featuring specific pore sizes are increasingly developed to bridge the gap between nanofiltration and ultrafiltration. So far, a wealth of efforts has been devoted to tackle the limitation found in TUF, but there still lacks a facile accessibility to upgrade TUF membranes with simultaneously improved permeance and selectivity. Herein, we report a large-pore covalent organic framework (LP-COF) as the building material to prepare ultra-permeable TUF membranes for fast separations. The LP-COF layers with an exceptionally large aperture size of up to ~3.6 nm are synthesized on macroporous substrates through a unidirectional diffusion method. The resultant LP-COF layers show a moderate crystallinity and low thickness down to ~60 nm, and allow ultrafast water permeation. Surprisingly, the optimal LP-COF membrane exhibits an unprecedented water permeance of ~3147 L m−2 h−1 MPa−1 with a high Congo red rejection (~92.6%), which is basically unchanged after several cycles of filtration. Moreover, the large-pore channels enable an unimpeded pass of ions, thus affording the membrane an excellent dye/salt separation competence, and largely exceeding state-of-the-art membranes. Therefore, this work opens up a new opportunity in producing high-performance TUF membranes by large-pore COFs for rapid and precise separations.
AB - Tight ultrafiltration (TUF) membranes featuring specific pore sizes are increasingly developed to bridge the gap between nanofiltration and ultrafiltration. So far, a wealth of efforts has been devoted to tackle the limitation found in TUF, but there still lacks a facile accessibility to upgrade TUF membranes with simultaneously improved permeance and selectivity. Herein, we report a large-pore covalent organic framework (LP-COF) as the building material to prepare ultra-permeable TUF membranes for fast separations. The LP-COF layers with an exceptionally large aperture size of up to ~3.6 nm are synthesized on macroporous substrates through a unidirectional diffusion method. The resultant LP-COF layers show a moderate crystallinity and low thickness down to ~60 nm, and allow ultrafast water permeation. Surprisingly, the optimal LP-COF membrane exhibits an unprecedented water permeance of ~3147 L m−2 h−1 MPa−1 with a high Congo red rejection (~92.6%), which is basically unchanged after several cycles of filtration. Moreover, the large-pore channels enable an unimpeded pass of ions, thus affording the membrane an excellent dye/salt separation competence, and largely exceeding state-of-the-art membranes. Therefore, this work opens up a new opportunity in producing high-performance TUF membranes by large-pore COFs for rapid and precise separations.
KW - Dye/salt separation
KW - Large-pore COFs
KW - Molecular separation
KW - Tight ultrafiltration
KW - Unidirectional diffusion
UR - http://www.scopus.com/inward/record.url?scp=85110618028&partnerID=8YFLogxK
U2 - 10.1016/j.memsci.2021.119635
DO - 10.1016/j.memsci.2021.119635
M3 - 文章
AN - SCOPUS:85110618028
SN - 0376-7388
VL - 637
JO - Journal of Membrane Science
JF - Journal of Membrane Science
M1 - 119635
ER -