Abstract
The valence of metal nodes in metal-organic frameworks (MOFs) determines their performance in applications while developing an efficient approach for valence regulation is challenging. Here we present a strategy to make the valence regulation much easier by loosening metal nodes by thermal pretreatment. The typical MOF, HKUST-1, with the tunable valence of Cu nodes, was used as a proof of concept. Thermal pretreatment (producing HK-T) changes the chemical environment and loosens Cu nodes, endowing them with enhanced reducibility. In the subsequent vapor-induced reduction, the yield of Cu+ from Cu2+ conversion in HK-T (producing HK-T-V) reaches 69%, which is higher than that in pristine HKUST-1 (producing HK-V) with a Cu+ yield of 19% as well as the reported yields of target-valence metal nodes in various MOFs (6%–30%). The obtained HK-T-V possessing abundant Cu+ sites can capture 0.809 mmol/g thiophene in adsorptive desulfurization, 2.5 times higher than HK-V and superior to most reported adsorbents.
Original language | English |
---|---|
Pages (from-to) | 158-164 |
Number of pages | 7 |
Journal | Fundamental Research |
Volume | 5 |
Issue number | 1 |
DOIs | |
State | Published - Jan 2025 |
Keywords
- Adsorption
- Copper
- Desulfurization
- Metal-organic frameworks
- Valence regulation