TY - JOUR
T1 - Mechanical, Crystallization, Rheological, and Supercritical CO2 Foaming Properties of Polybutylene Succinate Nanocomposites
T2 - Impact of Carbon Nanofiber Content
AU - Chen, Zhou
AU - Yin, Xichen
AU - Chen, Hui
AU - Fu, Xuguang
AU - Sun, Yuyue
AU - Chen, Qian
AU - Liu, Weidong
AU - Shen, Xiao
N1 - Publisher Copyright:
© 2023 by the authors.
PY - 2024/1
Y1 - 2024/1
N2 - As a substitute for conventional polymers for the preparation of biodegradable microcellular polymeric foams, polybutylene succinate (PBS) presents one of the most promising alternatives. However, the low melt strength of PBS makes it difficult to produce high-performance microcellular foams. This study aimed to improve the melt strength of PBS and explore the mechanical, thermal, crystalline, rheological, and supercritical CO2 foaming properties of PBS nanocomposites by using carbon nanofibers (CNFs). This study found that nanocomposites containing 7 wt% CNF exhibited the highest tensile strength, Young’s modulus, and bending strength. Moreover, the CNF nanofillers were well dispersed in the PBS matrix without significant agglomeration, even at high filler concentrations. Furthermore, the nanocomposites demonstrated improved melting temperature and crystallinity compared with pure PBS. The rheological analysis showed that the addition of CNFs significantly increased PBS viscosity at low frequencies due to the interaction between the PBS molecular chains and CNFs and the entanglement of CNFs, resulting in a more complete physical network formation when the CNF content reached above 3 wt%. During the supercritical CO2 foaming process, the addition of CNFs resulted in increased cell density, smaller cells, and thicker cell walls, with good laps formed between the fibers on the cell walls of nanocomposite foams. Moreover, the electrical conductivity and electromagnetic interference (EMI) shielding properties of the foamed material were studied, and a nanocomposite foam containing 7 wt% CNF showed good electrical conductivity (4.5 × 10−3 S/m) and specific EMI shielding effectiveness (EMI SE) (34.7 dB/g·cm−1). Additionally, the nanocomposite foam with 7 wt% CNF also exhibited good compression properties (21.7 MPa). Overall, this work has successfully developed a high-performance, multifunctional PBS-based nanocomposite foam, making it suitable for applications in various fields.
AB - As a substitute for conventional polymers for the preparation of biodegradable microcellular polymeric foams, polybutylene succinate (PBS) presents one of the most promising alternatives. However, the low melt strength of PBS makes it difficult to produce high-performance microcellular foams. This study aimed to improve the melt strength of PBS and explore the mechanical, thermal, crystalline, rheological, and supercritical CO2 foaming properties of PBS nanocomposites by using carbon nanofibers (CNFs). This study found that nanocomposites containing 7 wt% CNF exhibited the highest tensile strength, Young’s modulus, and bending strength. Moreover, the CNF nanofillers were well dispersed in the PBS matrix without significant agglomeration, even at high filler concentrations. Furthermore, the nanocomposites demonstrated improved melting temperature and crystallinity compared with pure PBS. The rheological analysis showed that the addition of CNFs significantly increased PBS viscosity at low frequencies due to the interaction between the PBS molecular chains and CNFs and the entanglement of CNFs, resulting in a more complete physical network formation when the CNF content reached above 3 wt%. During the supercritical CO2 foaming process, the addition of CNFs resulted in increased cell density, smaller cells, and thicker cell walls, with good laps formed between the fibers on the cell walls of nanocomposite foams. Moreover, the electrical conductivity and electromagnetic interference (EMI) shielding properties of the foamed material were studied, and a nanocomposite foam containing 7 wt% CNF showed good electrical conductivity (4.5 × 10−3 S/m) and specific EMI shielding effectiveness (EMI SE) (34.7 dB/g·cm−1). Additionally, the nanocomposite foam with 7 wt% CNF also exhibited good compression properties (21.7 MPa). Overall, this work has successfully developed a high-performance, multifunctional PBS-based nanocomposite foam, making it suitable for applications in various fields.
KW - EMI shielding
KW - carbon nanofibers (CNFs)
KW - electrical conductivity
KW - microcellular foams
KW - polybutylene succinate (PBS)
UR - http://www.scopus.com/inward/record.url?scp=85181847759&partnerID=8YFLogxK
U2 - 10.3390/polym16010028
DO - 10.3390/polym16010028
M3 - 文章
AN - SCOPUS:85181847759
SN - 2073-4360
VL - 16
JO - Polymers
JF - Polymers
IS - 1
M1 - 28
ER -