TY - JOUR
T1 - Mechanical properties of high entropy layered cathode structures
AU - Zhang, Junbo
AU - Zhang, Xiqi
AU - Qian, Nini
AU - Chen, Bingbing
AU - Zhou, Jianqiu
N1 - Publisher Copyright:
© 2024
PY - 2024/12
Y1 - 2024/12
N2 - Based on the high entropy theory, Fe, Mn, and Ni elements are doped into the transition metal Co sites in the LiCoO2 cathode structure. Two high entropy oxide cathode structures, namely the LiTMuniformO2 model and the LiTMnon-uniformO2 model, are constructed based on whether the distribution of transition metal elements is uniform. The crystal structure parameters, mechanical performance parameters, anisotropy index, and stress-strain performance of two high entropy models are calculated using first principles calculation method, and the structural stability is analyzed from a mechanical perspective. The effects of lithium-ion deintercalation on the crystal structure, mechanical properties, and stress-strain properties of two structures during the charging and discharging processes are studied. The research results indicate that the synergistic effect of multiple transition metal atoms is beneficial for improving the stability and mechanical properties of the cathode structure. The study of mechanical properties during delithiation process shows that as the degree of lithium removal increases, the Young's modulus of the material continues to decrease, while plasticity and toughness first increase and then decrease. Compared with non-uniform model, uniform model has better mechanical properties and cycle stability. The stress-strain performance of the LiTMuniformO2 model is superior to that of the LiTMnonuniformO2 model, and it can resist the influence of internal stress during battery cycling. This work provides some theoretical guidance for studying cathode materials with excellent mechanical properties and high energy density.
AB - Based on the high entropy theory, Fe, Mn, and Ni elements are doped into the transition metal Co sites in the LiCoO2 cathode structure. Two high entropy oxide cathode structures, namely the LiTMuniformO2 model and the LiTMnon-uniformO2 model, are constructed based on whether the distribution of transition metal elements is uniform. The crystal structure parameters, mechanical performance parameters, anisotropy index, and stress-strain performance of two high entropy models are calculated using first principles calculation method, and the structural stability is analyzed from a mechanical perspective. The effects of lithium-ion deintercalation on the crystal structure, mechanical properties, and stress-strain properties of two structures during the charging and discharging processes are studied. The research results indicate that the synergistic effect of multiple transition metal atoms is beneficial for improving the stability and mechanical properties of the cathode structure. The study of mechanical properties during delithiation process shows that as the degree of lithium removal increases, the Young's modulus of the material continues to decrease, while plasticity and toughness first increase and then decrease. Compared with non-uniform model, uniform model has better mechanical properties and cycle stability. The stress-strain performance of the LiTMuniformO2 model is superior to that of the LiTMnonuniformO2 model, and it can resist the influence of internal stress during battery cycling. This work provides some theoretical guidance for studying cathode materials with excellent mechanical properties and high energy density.
KW - First principles
KW - High-entropy layered cathode
KW - Mechanical properties
KW - Structural stability
UR - http://www.scopus.com/inward/record.url?scp=85207023329&partnerID=8YFLogxK
U2 - 10.1016/j.ssi.2024.116726
DO - 10.1016/j.ssi.2024.116726
M3 - 文章
AN - SCOPUS:85207023329
SN - 0167-2738
VL - 417
JO - Solid State Ionics
JF - Solid State Ionics
M1 - 116726
ER -