Multiscale Engineering of Nonprecious Metal Electrocatalyst for Realizing Ultrastable Seawater Splitting in Weakly Alkaline Solution

Jiankun Li, Tingting Yu, Keyu Wang, Zhiheng Li, Juan He, Yixing Wang, Linfeng Lei, Linzhou Zhuang, Minghui Zhu, Cheng Lian, Zongping Shao, Zhi Xu

Research output: Contribution to journalArticlepeer-review

44 Scopus citations

Abstract

Seawater electrolysis is an attractive technique for mass production of high-purity hydrogen considering the abundance of seawater. Nevertheless, due to the complexity of seawater environment, efficient anode catalyst, that should be, cost effective, highly active for oxygen evolution reaction (OER) but negligible for Cl2/ClO formation, and robust toward chlorine corrosion, is urgently demanded for large-scale application. Although catalysis typically appears at surface, while the bulk properties and morphology structure also have a significant impact on the performance, thus requiring a systematic optimization. Herein, a multiscale engineering approach toward the development of cost-effective and robust OER electrocatalyst for operation in seawater is reported. Specifically, the engineering of hollow-sphere structure can facilitate the removal of gas product, while atom-level synergy between Co and Fe can promote Co sites transforming to active phase, and in situ transformation of sulfate ions layer protects catalysts from corrosion. As a result, the as-developed hollow-sphere structured CoFeSx electrocatalyst can stably operate at a high current density of 100 mA cm–2 in the alkaline simulated seawater (pH = 13) for 700 h and in a neutral seawater for 20 h without attenuation. It provides a new strategy for the development of electrocatalysts with a broader application potential.

Original languageEnglish
Article number2202387
JournalAdvanced Science
Volume9
Issue number25
DOIs
StatePublished - 5 Sep 2022

Keywords

  • XAS
  • hollow sphere
  • in situ Raman
  • long-term stability
  • seawater splitting

Fingerprint

Dive into the research topics of 'Multiscale Engineering of Nonprecious Metal Electrocatalyst for Realizing Ultrastable Seawater Splitting in Weakly Alkaline Solution'. Together they form a unique fingerprint.

Cite this