TY - JOUR
T1 - Nanochanneling and Local Crystallization Engineering Accelerate Multiphase Single-Atom Catalysis for Rapid Water Decontamination
AU - Liu, Ya
AU - Wang, Yuxian
AU - Wang, Yunpeng
AU - Miao, Jie
AU - Yang, Jiajia
AU - Hu, Kunsheng
AU - Sun, Hongqi
AU - Xiao, Jiadong
AU - Chen, Chunmao
AU - Duan, Xiaoguang
AU - Wang, Shaobin
N1 - Publisher Copyright:
© 2025 The Author(s). Angewandte Chemie International Edition published by Wiley-VCH GmbH.
PY - 2025
Y1 - 2025
N2 - Precise engineering of single-atom catalysts (SACs) with optimal hierarchical structures and favorable local chemical environments remains a significant challenge to cater for multiphase heterogeneous processes. Here, we develop a universal strategy for synthesizing channel-digging microspherical SACs that markedly enhance gas–liquid–solid mass transfer and fine-tune the thermodynamics of catalytic ozonation. By catalytically graphitizing carbon microspheres and selectively etching amorphous carbon domains via mild combustion, we fabricate cross-linked hierarchical graphitic nanochannels confining transition metal (e.g., Co, Cr, Mn, Fe, Ni) single atoms (TMCSs-Air). This nanoenvironment engineering increases interfacial ozone (O3) mass transfer by 3.2-fold and directs O3 adsorption from a conventional “end-on” to a bidental “side-on” configuration. The enhanced inter-orbital electronic interactions lower the O3 activation barrier and form highly oxidizing surface-confined O3 (*O3). Consequently, the CoCSs-Air catalyst achieves a 3.6-fold higher ozone utilization efficiency and a 4.2-fold greater turnover frequency (TOF = 1580 min−1) compared with pristine Co-doped carbon microspheres (CoCSs). Technical and economic evaluations further confirm the feasibility of TMCSs-Air nanoreactors in treating real-world petrochemical wastewater, highlighting its broader potential in overcoming gas diffusion barriers and tuning reaction pathways for multiphase heterogeneous catalysis.
AB - Precise engineering of single-atom catalysts (SACs) with optimal hierarchical structures and favorable local chemical environments remains a significant challenge to cater for multiphase heterogeneous processes. Here, we develop a universal strategy for synthesizing channel-digging microspherical SACs that markedly enhance gas–liquid–solid mass transfer and fine-tune the thermodynamics of catalytic ozonation. By catalytically graphitizing carbon microspheres and selectively etching amorphous carbon domains via mild combustion, we fabricate cross-linked hierarchical graphitic nanochannels confining transition metal (e.g., Co, Cr, Mn, Fe, Ni) single atoms (TMCSs-Air). This nanoenvironment engineering increases interfacial ozone (O3) mass transfer by 3.2-fold and directs O3 adsorption from a conventional “end-on” to a bidental “side-on” configuration. The enhanced inter-orbital electronic interactions lower the O3 activation barrier and form highly oxidizing surface-confined O3 (*O3). Consequently, the CoCSs-Air catalyst achieves a 3.6-fold higher ozone utilization efficiency and a 4.2-fold greater turnover frequency (TOF = 1580 min−1) compared with pristine Co-doped carbon microspheres (CoCSs). Technical and economic evaluations further confirm the feasibility of TMCSs-Air nanoreactors in treating real-world petrochemical wastewater, highlighting its broader potential in overcoming gas diffusion barriers and tuning reaction pathways for multiphase heterogeneous catalysis.
KW - Carbon crystallinity regulation
KW - Heterogeneous catalytic ozonation
KW - Nanoenvironment engineering
KW - Nonradical reaction
KW - Tri-phase reaction
UR - http://www.scopus.com/inward/record.url?scp=105004277451&partnerID=8YFLogxK
U2 - 10.1002/anie.202504571
DO - 10.1002/anie.202504571
M3 - 文章
AN - SCOPUS:105004277451
SN - 1433-7851
JO - Angewandte Chemie - International Edition
JF - Angewandte Chemie - International Edition
ER -